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A B S T R A C T

Current research on traffic control has focused on the optimization of either traffic signals or
vehicle trajectories. With the rapid development of connected and automated vehicle (CAV)
technologies, vehicles equipped with dedicated short-range communications (DSRC) can com-
municate not only with other CAVs but also with infrastructure. Joint control of vehicle trajec-
tories and traffic signals becomes feasible and may achieve greater benefits regarding system
efficiency and environmental sustainability. Traffic control framework is expected to be extended
from one dimension (either spatial or temporal) to two dimensions (spatiotemporal). This paper
investigates a joint control framework for isolated intersections. The control framework is
modeled as a two-stage optimization problem with signal optimization at the first stage and
vehicle trajectory control at the second stage. The signal optimization is modeled as a dynamic
programming (DP) problem with the objective to minimize vehicle delay. Optimal control theory
is applied to the vehicle trajectory control problem with the objective to minimize fuel con-
sumption and emissions. A simplified objective function is adopted to get analytical solutions to
the optimal control problem so that the two-stage model is solved efficiently. Simulation results
show that the proposed joint control framework is able to reduce both vehicle delay and emis-
sions under a variety of demand levels compared to fixed-time and adaptive signal control when
vehicle trajectories are not optimized. The reduced vehicle delay and CO2 emissions can be as
much as 24.0% and 13.8%, respectively for a simple two-phase intersection. Sensitivity analysis
suggests that maximum acceleration and deceleration rates have a significant impact on the
performance regarding both vehicle delay and emission reduction. Further extension to a full
eight-phase intersection shows a similar pattern of delay and emission reduction by the joint
control framework.

1. Introduction

Current traffic signal control strategies, including fixed-time, vehicle-actuated and adaptive control, allocate green times to
different vehicle movements to avoid conflicts at intersections. Infrastructure-based vehicle detection systems are widely used to
collect real-time traffic data as the input to control algorithms. With the rapid development of connected and automated vehicle
(CAV) technologies, vehicles can communicate with roadside equipment (RSE) through dedicated short range communications
(DSRC). Data collected at RSE provide much richer information on vehicle states than conventional detector data. At the same time,

https://doi.org/10.1016/j.trc.2018.02.001
Received 13 August 2016; Received in revised form 18 January 2018; Accepted 2 February 2018

⁎ Corresponding author at: Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, United States.
E-mail address: henryliu@umich.edu (H.X. Liu).

Transportation Research Part C 89 (2018) 364–383

0968-090X/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0968090X
https://www.elsevier.com/locate/trc
https://doi.org/10.1016/j.trc.2018.02.001
https://doi.org/10.1016/j.trc.2018.02.001
mailto:henryliu@umich.edu
https://doi.org/10.1016/j.trc.2018.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2018.02.001&domain=pdf


data from RSE (e.g. signal status and intersection map) can be broadcast to vehicles within the communication range. The two-way
real-time communication between CAVs and infrastructure makes vehicles “controllable” through either speed advisory systems in
human-driven connected vehicles or control systems in CAVs.

Therefore, in a CAV environment, not only traffic signals but also vehicle trajectories can be controlled to improve traffic effi-
ciency and gain environmental benefits. Control framework is expected to be extended from one dimension (either spatial or tem-
poral) to two dimensions (spatiotemporal). However, current research efforts mainly address only one side of the joint control
problem.

Eco-driving and speed advisory mainly focus on vehicle trajectory control, which is spatial control of vehicle movements. These
applications assume that signal timing is fixed and known to vehicles. Optimal control or feedback control (Yang and Jin, 2014)
models are built. It is often difficult to solve an optimal control model efficiently in case of complex objective or constraint for-
mulations. Therefore, different simplification methods are proposed to address this issue. A typical method is to divide a vehicle
trajectory into several segments with constant acceleration/deceleration for each segment (He et al., 2015; Wu et al., 2015). The
optimal control problem is transformed into a nonlinear optimization problem with much fewer decision variables. In addition to
trajectory segmentation, numerical solution algorithms are often applied. Meta-heuristics such as genetic algorithm, or gradient-
based method, for example, offered by General Pseudospectral Optimal Control Software (GPOPS), can be used to solve various
optimal control problems (Benson et al., 2006; Garg et al., 2010; Rao et al., 2010). However, this method may be computationally
intensive, especially with a large problem size and the solutions may be worse than the approximation model (He et al., 2015). While
most of the studies try to address the trajectory control of an individual vehicle or a few vehicles, a parsimonious shooting heuristic
(SH) algorithm was proposed to construct all vehicle trajectories considering vehicle kinematic limits, traffic arrival patterns, car-
following safety and signal operations (Ma et al., 2016; Zhou et al., 2017).

CAV based signal control applications consider vehicle trajectories as the input to signal control algorithms, which perform
temporal control of traffic signals, and vehicle trajectories are not optimized. Real-time trajectory data (e.g., location, speed, and
acceleration) of CAVs are used for signal optimization, based on which phase sequences and green durations are optimized. Link
parameters such as traffic demand and queue length are calculated for phase skipping, extension or interruption (Gradinescu et al.,
2007). Standard North American NEMA dual-ring, eight-phase controller is usually adopted to generate the optimal signal phase
sequence and duration (Feng et al., 2015; He et al., 2012). Minimization of vehicle delay is considered as the optimization objective,
and the problem is solved using different optimization techniques such as dynamic programming (DP) or mixed integer linear
programming (MILP). In addition to using delay in the objective function, other performance metrics are explored such as weighted
cumulative waiting time (WCWT) (Datesh et al., 2011) and cumulative travel time (CTT) (Lee et al., 2013). Instead of mathematical
optimization models, microscopic simulations are also applied with vehicle trajectory data for optimal signal plans (Goodall et al.,
2013).

One notable solution to the joint control problem of vehicle trajectories and traffic signals is so-called “signal free” intersections
where traffic signals are removed, and all vehicles pass the intersection in a self-organized way (Lee and Park, 2012; Zohdy and
Rakha, 2014). However, this approach requires 100% penetration rate of fully automated vehicles, which is not realistic in the near
future. It can be predicted that in the next ten to twenty years, traffic signals will still play an important role in urban transportation
operations.

Another related study which investigated the joint control problem (Li et al., 2014) intuitively divided a vehicle trajectory into
four segments with constant acceleration and deceleration rates to reduce the number of decision variables. However, no mathe-
matical proofs were given regarding the optimal number of trajectory segments in terms of fuel consumption or emissions under
different situations, which are specifically addressed in this paper. The signal control algorithm enumerated all possible timing plans,
which cannot be extended to complex phase structures.

This paper proposes an integrated framework for joint control of traffic signals and vehicle trajectories. A two-stage optimization
model is built where traffic signals and vehicle trajectories are optimized sequentially. DP is applied to the signal control problem
with the objective to minimize vehicle travel time delay. Optimal control theory is applied to control the trajectories of platoon
leading vehicles with the objective to minimize fuel consumption and emission. The trajectories of following vehicles are captured by
a car-following model. Currently, a fully CAV environment is assumed, where all vehicle are controllable, although only a few
vehicles are controlled. To identify the leading vehicle of each platoon, a platoon identification algorithm is designed. A simplified
objective function is proposed for the vehicle trajectory control model, and analytical solutions are derived.

The rest of the paper is organized as follows. Section 2 introduces the methodologies of the joint control framework. Section 3
provides the rolling horizon scheme to perform the two-stage optimization. Section 4 presents numerical examples through simu-
lation and sensitivity analysis on critical parameters. Section 5 concludes the paper and lays out the direction of further research.

2. Model formulations

2.1. Notations

Before the model presentation, notations are summarized in Table 1. The notations in brackets represent the same variable with
some of the subscripts omitted for simplicity.
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2.2. Model framework

The proposed joint control framework aims at improving the efficiency of green time utilization to minimize vehicle delay and
smoothing vehicle trajectories to reduce fuel consumption and emissions. Fig. 1 shows the comparison of green time utilization
between the state-of-practice signal control and the proposed joint control.

The blue curve shows the vehicle discharging rate at an intersection under current signal control strategies. When signals turn to
green, the first few seconds of the green time are wasted (start-up lost time tsl) because of the reaction time of human drivers. Then
the discharging rate increases to the saturation flow rate (qs) until queued vehicles are fully discharged. Finally, it drops to the arrival
rate which is usually lower than the saturation flow rate. The area below the curve is the vehicle demand served during the green
time. In the proposed framework, the trajectory of the leading vehicle of an approaching platoon is controlled so that it arrives at the
intersection at the beginning of the green time with a certain speed. The control of the leading vehicle trajectory also results in a
compact platoon so that the discharging rate keeps the saturation flow rate (as shown in the black dashed line). If Area 3 is equal to
the summation of Area 1 and Area 2, then within a much shorter green time interval (gnew), the same number of vehicles can pass the
intersection as in current control strategies where the green time is much longer (gcur). As a result, the green time utilization is greatly
improved. Note that the proposed framework does not increase intersection capacity by shortening the saturation headway, but by
utilizing green time more efficiently.

To achieve this goal, a two-stage optimization model is proposed. In the first stage, adaptive signal control concept is adopted to

Table 1
Variables and notations.

Variables Meanings

Car-following model
n Vehicle index
x t( )n [x(t)] Location of nth vehicle at time t (m)
v t( )n [v(t)] Speed of nth vehicle at time t (m/s)
u t( )n [u(t)] Acceleration/deceleration rate of nth vehicle at time t (m/s2)

tΔ Simulation step (sec)
τn Reaction time of vehicle n (sec)
ln Length of vehicle n (m)

gn
jam Jam spacing between vehicles n and n− 1 (m)

an
U [aU] Maximum acceleration rate of vehicle n (m/s2)

an
L [aL] Maximum deceleration rate of vehicle n (m/s2)

vn
f [vf] Free flow speed of vehicle n (m/s)

Signal optimization
J Total number of stages planned in DP
j Index of stage (phase) in DP
T Total time in the planning horizon
P Number of phases in one cycle
p Phase Index
sj State variable denoting the total number of time steps planned up to stage j
xj Control variable denoting the number of time steps planned in stage j
Xj(sj) Set of feasible control variables in stage j given the total time planned sj
vj(sj) Cumulative value function up to stage j given the total time planned sj
fj(sj, xj) Performance function at stage j, given sj and xj
X j

min Minimum phase time of stage j (sec)

X j
max Maximum phase time of stage j (sec)

gmin Minimum green time (sec)
gmax Maximum green time (sec)
gtran Transition interval (yellow plus red-clearance) (sec)

Platoon identification
gp Remaining green time of phase p (sec)
rp Remaining red time of phase p (sec)
hs Saturation headway (sec)
dDSRC DSRC range (m)
dmax Furthest distance that a vehicle can be included in the first platoon (m)

Vehicle trajectory control
t0 Time point when the trajectory control begins (sec)
tf Time point when the vehicle arrives at the intersection (sec)
vo Vehicle speed at time t0 (m/s)
vtf Vehicle speed at time tf (m/s)
L Distance to the intersection at time t0 (m)
vaL Initial vehicle speed with maximum deceleration all the time (m/s)

vaU Initial vehicle speed with maximum acceleration all the time (m/s)
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address flow fluctuations. Total vehicle delay is used as the objective function (1):

∑ ∑ ∑= =D D g u d g umin ( , ) ( , )
g u

p p p
p n

p n p p
,

,
p p (1)

⩽g g us.t. ( , ) 0p p (2)

where dp n, is the delay of vehicle n in phase p; gp is the remaining green time of phase p; up is the acceleration/deceleration rate
profile of the leading vehicle in phase p. up, given the value of gp, is the solution of the second stage problem. Note that the first-stage
optimization does not generate a fixed cycle length, but the cycle length is bounded by the minimum and maximum green times of
each phase. Constraint (2) mainly includes signal timing parameters (e.g. minimum and maximum green time) and car-following
rules. The detailed formulation of the objective function and constraints of adaptive signal control can be found in Section 2.4.

At the second stage, the trajectory of each leading vehicle is controlled to minimize fuel consumption and emissions in Eq. (3).

J g umin ( , )
u p p

p (3)

⩽h g us.t. ( , ) 0p p (4)

As shown in Fig. 2, the objective of the trajectory control is to make the leading vehicle arrive at the intersection (distance L) at
time point tf, which is the beginning of green, with a certain speed vtf (Fig. 2). Constraint (4) presents vehicle dynamics limits (e.g.
maximum acceleration), travel time and travel distance. For simplicity, some assumptions are made. All vehicles are homogenous,
which have the same size and vehicle dynamics (e.g. acceleration, desired speed). All vehicles are light vehicles and have no time
delay on acceleration and deceleration. All following vehicles obey certain car following rules, based on which following vehicles
with larger gaps will try to catch up with their leading vehicles with safety constraints. Lane changing and overtaking behaviors are
prohibited. Therefore, a compact platoon can be generated naturally without controlling the trajectories of all vehicles.

Signals are the decision variables in the first stage problem. Vehicle trajectories are then optimized in the second stage problem
based on the signals at the first stage. With both signals and vehicle trajectory profiles, delay in the first stage problem is calculated.

2.3. Trajectory control

2.3.1. Leading vehicle trajectory control
The trajectories of platoon leading vehicles are controlled to arrive at the intersection at the beginning of green with a certain

speed. An optimal control model is formulated:

∫=J u t dtmin | ( )|
u t t

t

( )

f

0 (5)
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Fig. 2. Leading vehicle trajectory control.
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Fig. 1. Green time utilization comparison.
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Vehicle position x(t) and speed v(t) at time t are the state variables. Vehicle acceleration rate u(t) is the control variable and is
bounded by maximum deceleration −aL and acceleration rates aU as shown in Eq. (9). The relationship between the state variables
and the control variable which defines the vehicle dynamics is expressed in Eq. (6). The initial and final states are defined in Eqs. (7)
and (8), respectively. t0= 0 is the time when trajectory control begins. tf is the departure time of the leading vehicle at the inter-
section. vo is the vehicle’s current speed. vtf is the vehicle’s speed passing the intersection. And L is the distance to the intersection
from the current position, which is the total distance traveled by the vehicle. From the formulation, it can be seen that the total travel
time and travel distance of the leading vehicle is constrained by Eq. (8). The objective function (5) is used to minimize acceleration
and deceleration fluctuations over time in order to reduce fuel consumption or emissions. The purpose of using this simplified
formulation is to derive analytical solutions by the Pontryagin’s minimum principle (PMP) (Sethi and Thompson, 2000), which greatly
reduces computational time. The derivation of analytical solutions and proofs of optimality is illustrated in detail in Appendix A. It
can be seen from the analysis that the optimal trajectory consists of no more than three segments. As an example, Fig. 3 shows a
general optimal trajectory in which the switch time t1 and t2 can be obtained uniquely by solving Eqs. (10) and (11) with the
constraint of <t t1 2. For acceleartion trajectory segment, just replace −aL with aU.

+ + − +
+

− =v v t v t t
v v

t t L
2

( )
2

( )c
c

tf c
f

0
1 2 1 2 (10)

= − = + −v v a t v a t t( )c
L

tf
L

f0 1 2 (11)

To justify whether the simplified objective function is appropriate, EPA’s MOVES emission model (EPA, 2002) is applied as the
objective function for comparison as described in detail in Section 2.5.

2.3.2. Platoon identification
To identify the leading vehicle of each platoon to apply the optimal control model, a platoon identification algorithm is developed

to separate platoons for different cycles within the DSRC communication range, as shown in Fig. 4. Grey vehicles represent platoon
leading vehicles, and black vehicles represent following vehicles. Platoons are identified one by one from the stop-bar. The number of
identified platoons is related to the DSRC communication range as well as the number of cycles planned in DP. Generally, the platoon
number should be less than or equal to the cycle number planned in DP. In reality, due to the limited range of DSRC communication
(e.g. 300m), usually only one or at most two platoons can be identified for each phase with a reasonable cycle length. The following
illustrations are based on only one cycle planned in DP. The analysis is similar if more cycles are planned.

The platoon size for phase p is limited by several factors:

1. The duration of the green time generated by DP in signal optimization. The maximum number of vehicles can be calculated as
floor(gp/hs), where gp is the remaining green time of phase p, hs is the saturation headway, and the floor function means rounding
down to the next integer.

v0

vc

vtf

-aL

-aL

t1 t2 ttf

Speed

Time
Fig. 3. A general optimal trajectory.
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2. Vehicle location. If a vehicle is too far away from the stop-bar, then it may not be able to catch the platoon. The furthest distance
dmax that a vehicle can be included in the first platoon is calculated as dmax=(rp+ gp)× vf, where rp is the remaining red time of
phase p and vf is the free flow speed. If phase p is the current phase, then rp=0.

3. DSRC range dDSRC. If a vehicle is outside the DSRC range, then it will not be included in the platoon identification algorithm.

In summary, if a vehicle’s sequence in the approaching vehicles is less than or equal to floor(gp/hs) and its distance to the
intersection is small than min(dmax, dDSRC), this vehicle can be included in the first platoon. Otherwise, it should be included in other
platoons and pass the intersection without stops at stop-bars in later cycles. Therefore, no queues will be generated at stop-bars.

2.3.3. Car-following model
To model the behaviors of following vehicles in a platoon, the Next Generation Simulation (NGSIM) car-following model (Yeo

et al., 2008) is adopted to update their trajectories. This car-following model is based on Newell’s linear car-following (Newell, 2002)
model with additional safety constraints to avoid collisions (Gipps, 1981). The model also considers vehicle performance limits such
as maximum acceleration and deceleration rates. The model is described as

+ = + +x t t x t t x t t( Δ ) max{ ( Δ ), ( Δ )}n n
U

n
L (12)

where x t( )n is the location of nth vehicle at time t; tΔ is the simulation step; x t( )n
U and x t( )n

L are the upper and lower bounds of x t( )n .
The vehicle location at time +t tΔ is the maximum of an upper bound and a lower bound travel distance.

The upper bound is determined by four factors: car-following rules, acceleration capability, free flow speed and maximum safety
distance to avoid collisions. The upper bound travel distance can be expressed as follows:
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L
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where τn is the reaction time of vehicle n; −ln 1 is the length of vehicle n− 1; gn
jam is the jam spacing between vehicles n and n− 1;

v t( )n is the speed of the nth vehicle at time t; an
U is the maximum acceleration of vehicle n; vn

f is the free flow speed of vehicle n;
+x t tΔ ( Δ )n

s is the maximum safety distance to avoid collisions of vehicle n at time +t tΔ ; and an
L is the maximum deceleration of

vehicle n.
The lower bound is determined by the deceleration capability and current position to prevent the vehicle moving backward. The

lower bound travel distance is expressed as

+ = + +x t t x t x t v t t a t( Δ ) max{ ( ), ( ) ( )Δ Δ }n
L

n n n n
L 2 (15)

2.4. Signal control

The signal control is formulated as a DP problem which considers each phase as a stage in DP (Sen and Head, 1997). A forward
recursion is used to calculate the performance measures and record the optimal value function. A backward recursion is used to
retrieve the optimal solution.

The forward and backward recursions are described as follows.
Forward recursion

Step 1: Set j=1 and vj(0)= 0;
Step 2: for sj=1,… , T

= + ∈− −v s Min f s x v s x X s( ) { ( , ) ( )| ( )}j j x j j j j j j j j1 1j (16)

Record ∗x s( )j j as the optimal solution in Step 2.

Step 3: if (j < P+1), j= j+1, go to step 2.
else if (vj−k(T)= vj(T)) for all k≤ P− 1, STOP.
Else j= j+1, and go to step 2.

DSRC Range

Platoon i Platoon 1Platoon 2

Fig. 4. Platoon identification.
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Where j is the stage (phase) index in DP; T is the total time in the planning horizon; P is the number of phases in one cycle; sj is the
state variable denoting the total number of time steps planned up to stage j; xj is the control variable denoting the number of time
steps planned in stage j; Xj(sj) is the set of feasible control variables given the total time planned sj; vj(sj) is the cumulative value
function up to stage j given the total time planned sj; and fj(sj, xj) is the performance function at stage j, given state variable sj and
control variable xj.

The set of feasible control variables Xj(sj) depends on the signal parameters such as minimum green time, maximum green time,
yellow change intervals and all-red clearance time. Let Xj

min and Xj
max to be the minimum phase time and maximum phase time of

stage j, respectively. The minimum/maximum phase time includes the green, yellow and all-red clearance time of a phase. Then the
feasible control variable set can be expressed:

=
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− ⩽

… − >

… − ⩽ − ⩽
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j j
min

j j
max

1

1

1 1 (17)

And s0= 0.
The performance function fj(sj, xj) is calculated based on total vehicle travel time delay. It is defined as the time difference

between actual vehicle travel time and free flow travel time. The actual vehicle travel time is calculated by a vehicle’s departure time
at the stop bar minus the time when this vehicle enters the DSRC range. With vehicle trajectory control, no queue will be generated at
the intersection unless under oversaturation. Vehicles may reduce their speeds in the upstream of the intersection, and the resultant
delay is included in travel time delay calculation. Since the platoon leading vehicle’s departure time is determined by the trajectory
control algorithm, all following vehicles’ departure time can be estimated by the saturation flow rate if a vehicle can catch up with its
leading vehicle. Otherwise, the vehicle will arrive at the intersection with free flow speed (no delay). The algorithm plans as many
stages (phases) as necessary to get the optimal solution until the stop criteria in step 3 is met. The proof of the stop criteria can be
found in (Sen and Head, 1997).

Backward recursion
The backward recursion retrieves the optimal decision of each stage ∗x s( )j j working backwards.

Step1: −
∗sJ 1 = T

Step2: for {j= J− 1, J− 2,… , 1}

= −−
∗ ∗ ∗s s x s( )j j j j1 (18)

where J is the total number of stages planned.

2.5. Benchmark model for objective function justification

To justify the simplified objective function in Eq. (5), the multi-scale motor vehicle & equipment emission system (MOVES) model
(EPA, 2002) of U.S. Environmental Protection Agency (EPA) is applied as the benchmark model for comparison. This model estimates
vehicle specific power (VSP) with the input from vehicle speed and acceleration values. Then VSP modes are identified through a
look-up table. Furthermore, according to different types of vehicles, engine sizes, and mileages, vehicle emissions are located in the
emission table (refer to the EPA report (EPA, 2002) for more details).

With the MOVES emission model as the objective function, the analytical solution is not available. Therefore, an approximation
model (He et al., 2015) which transforms the optimal control problem to a nonlinear programming problem with much fewer
decision variables is constructed for platoon leading vehicle trajectory control. The approximation model also divides a vehicle
trajectory into three segments with constant acceleration or deceleration rates in each segment. The middle segment is for vehicle
cruising where the vehicle speed is kept as a constant. Therefore, the decision variables in this model are reduced to four: two
acceleration/deceleration rates a1, a2, and two switch time points t1, t2. The model is formulated as follows:

∫ ∫ ∫= + +J F v a t a dt F v dt F v a t a dtmin ( ( , ), ) ( ,0) ( ( , ), )
a a t t

t

t

t c
t

t

, , , 0 1 1 2 2
f

1 2 1 2

1

1

2

2 (19)

s.t.

= + = − − ⩾v v a t v a t t( ) 0c
t f0 1 1 2 2f (20)

+ + − + − + − =v t a t v t t v t t a t t L1
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2
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f f0 1 1 1

2
2 1 2 2 2

2
(21)

⩽ ⩽t t0 1 2 (22)

⩽ ⩽t t tf1 2 (23)

− ⩽ ⩽a a aL U
1 (24)

− ⩽ ⩽a a aL U
2 (25)
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In this formulation, F(v, a) is the MOVES emission model and vc is the cruising speed. Eq. (20) ensures that the vehicle speeds are
continuous between trajectory segments. Eq. (21) ensures that the vehicle reaches the intersection at the end of the third trajectory
segment. Eqs. (22)–(25) are the lower and upper boundaries of the decision variables.

This model doesn’t require the maximum acceleration and deceleration rates during trajecotry planning. The cruising trajectory
segment may not exist if t1= t2. Although the formulation is simple and the number of decision variables is small, this problem is
nonlinear which increases computational burden, and yet the quality of the solutions cannot be guaranteed, which is demonstrated in
the numerical examples.

3. Rolling horizon scheme

The proposed joint control algorithm is implemented in MATLAB. The flow chart of the optimization process is shown in Fig. 5.
Time is discretized into 1 s steps. Signal status and vehicle trajectories are updated every time step. A rolling horizon scheme is
adopted in which the optimization process is repeated every 2 s to include recent vehicle arrivals. The planning horizon for signal
optimization is two cycles, in which two cycles of signal timing are generated by DP. The generated signal timing will be executed in
the next rolling horizon (2 s). It also serves as the input to the platoon identification algorithm. Then the optimal trajectories of the
platoon leading vehicles are solved analytically using the optimal control model. Similarly, the platoon leading vehicles will follow
the optimal trajectory during the next rolling horizon. Following vehicles update their trajectories according to the car-following
model. Vehicle trajectories are used to estimate the performance function in signal optimization.

Signal Status Update

Vehicle Trajectory 
Update

Signal Optimization

Platoon Identification

Leading Vehicle 
Trajectory Control

Signal Timing Plan

Leading Vehicle Status

Start

Parameters 
Initialization

Increase Time Step

End of SimulationTime?

5 seconds since last 
optimization?

End
Yes

No

Yes

Optimal Signal
 Timing Plan

Leading Vehicle
 Trajectory Profile

No

Fig. 5. Rolling horizon scheme.
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4. Numerical examples

4.1. Simulation setup

We start with a hypothetical intersection of two single-lane approaches. Two signal phases are applied, and no turning movements
and lane changing behaviors are considered. The DSRC range is 300m from the center of the intersection which provides reliable
communication (Emmelmann et al., 2010). Although this paper assumes DSRC is used for V2I communication, other wireless
communication technologies (e.g., cellular) can also be applied as long as the communication range and latency meet the require-
ment. All vehicles in the communication range are controllable, although only a few vehicles are controlled.

The default parameters for the car-following model are set as follows: τn =2 s, +−l gn n
jam

1 =6m (consider uniform vehicle
length), an

U =2m/s2, an
L =−2m/s2, vn

f =14m/s (∼50 km/h).
In signal optimization, the two phases of a cycle are identical. The corresponding default parameters are set as follows: the

minimum green time gmin=10, the maximum green time gmax=26, and the transition interval gtran=4 which includes yellow
interval and all-red clearance time. Therefore, Xj

min = gmin+ gtran and Xj
max = gmax+ gtran. The maximum acceleration and decel-

eration rates for vehicle trajectory control are set to be the same as those in the car-following model, and vtf =10m/s.
From the analysis in Appendix A, it can be seen that the optimal control formulation for leading vehicle trajectory control may not

always have solutions. Based on the parameters above, if the green time generated by DP is smaller or equal to 5 s, the signal
optimization will not be executed until the beginning of the next phase to prevent modifying the leading vehicle trajectory when it is
too close to the intersection.

4.2. Simulation results and discussion

Vehicle arrival conforms to the Poisson distribution. Three different traffic demand levels are tested. The demands in the two
approaches are set to be the same. The three levels are 500 veh/h/lane, 650 veh/h/lane and 800 veh/h/lane (i.e., medium, high and
near-saturated traffic conditions). The corresponding v/c ratios are 0.64, 0.83, and 0.97. v/c ratio is calculated based on an 1800 veh/
h/lane saturation flow rate and the effective green time is equal to the actual green time. Four different scenarios are simulated:
Fixed, Adaptive, OC and NLP. In the “Fixed” scenario, vehicle trajectories are not controlled, and the signal timing is fixed. Each
phase has 26 s of green time, 4 s of transition time and 30 s of red time. In the “Adaptive” scenario, vehicle trajectories are not
controlled, but the signal timing is optimized using DP (Section 2.4). In the “OC” scenario, vehicle trajectories are controlled using the
optimal control model with simplified objective function (Section 2.3.1) and the signal timing is optimized using DP. In the “NLP”
scenario, vehicle trajectories are controlled using the Non-linear programming (NLP) approximation model with MOVES model as the
objective function (Section 2.5) and the signal timing is optimized using DP. The total simulation time for each scenario is 1000 s.
Fig. 6 shows the comparison of vehicle trajectories under the four scenarios with medium demand level. The DSRC communication
range is shown as a horizontal line at the location of 200m.

By comparing the scenarios “Fixed” and “Adaptive”, it can be seen that in some cycles of the “Fixed” scenario, a portion of green
time is wasted. The “Adaptive” scenario generates timing plans adaptively based on vehicle arrivals so that green time will be utilized
more efficiently. More specifically, under “Fixed” scenario, part of the green times are wasted during the fifth cycle and the seventh
cycle, which does not occur with the “Adaptive” scenario. Without controlling vehicle trajectories, vehicles stop at stop-bars for red
signals in both the “Fixed” and “Adaptive” scenarios. With vehicle trajectories controlled, leading vehicles of each platoon in the
“OC” and “NLP” scenarios slowdown in the middle of the road segment to avoid stops at stop-bars. They are controlled to arrive at the
intersection at the beginning of the green most of the times to improve green time utilization. Following vehicles obey the car-
following model to catch up with preceding vehicles so that compact platoons are generated. The figure also shows that the scenarios
“OC” and “NLP” generate similar vehicle trajectories. In both scenarios, at the end of the third cycle (around 150 s), there is a sudden
deceleration of the leading vehicle trajectory. That’s caused by the change of signal timing due to adaptive signal control. In this case,
the green time generated by the adaptive control algorithm is 1 s shorter than the previous rolling horizon. As a result, the last vehicle
of the previous platoon cannot pass the intersection and it becomes the leading vehicle of a new platoon. It is then controlled to arrive
at the intersection in the next cycle. On the other hand, the leading vehicle of the sixth cycle (around 270 s) cannot arrive at the
intersection at the beginning of the green so that it is not controlled and it travels at the free-flow speed to the intersection.

Table 2 shows the comparison of total vehicle delay, CO2 emissions and execution time of the four scenarios under different traffic
demand levels. Results of all scenarios are the mean and standard deviation (value in parentheses) of 5 different random seeds. CO2

emissions are calculated by the MOVES emission model based on vehicle trajectories generated in each scenario. Note that the “NLP”
scenario incorporates MOVES model into the objective function while other three scenarios just use MOVES model for evaluation.
Vehicle category 11 in MOVES model (odometer< 50,000miles and engine size< 3.5 l) is used. The execution time to run the
1000 s simulation is recorded.

Several observations can be made from the results:

1. Without vehicle trajectory control, adaptive control outperforms fixed-time control regarding both vehicle delay and CO2

emissions. The benefit decreases as traffic demand increases. That is because, under higher demand levels, adaptive control tends
to assign maximum green time to each phase to serve more demand which essentially turns to be fixed-time control. With vehicle
trajectory control, under near-saturated demand level, “OC” and “NLP” can still reduce about 10% vehicle delay compared to
“Fixed” and “Adaptive”, because trajectory control eliminates start-up lost time and increases the capacity of the intersection. To
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better illustrate the benefit of capacity increase, we design a special case with uniform vehicle arrival (800 veh/h/lane) and fixed-
time signals as shown in Fig. 7. It can be seen from Fig. 7(a) that, without trajectory control, the intersection is oversaturated and
the queue is propagating over cycles. Fig. 7(b) shows the vehicle trajectories under the same demand level and the same signal

(a) Fixed 

(b) Adaptive 

(c) OC

(d) NLP 
Fig. 6. Vehicle trajectory comparison under four scenarios.

Table 2
Comparison of vehicle delay, CO2 emission and execution time.

Scenario Delay (s) % CO2 emission (kg) % Execution time (s)

Demand level: 500 veh/h/lane (v/c= 0.64)a

Fixed 4400.6 (999.9) N/A 51.4 (7.2) N/A 0.8 (0.03)
Adaptive 3746.4 (749.3) −14.9 47.5 (4.9) −7.5 6.1 (0.14)
OC 3752.2 (854.5) −14.7 47.2 (4.6) −8.2 1.4 (0.06)
NLP 3851.4 (806.6) −12.5 47.9 (4.1) −6.7 657.8 (26.18)

Demand level: 650 veh/h/lane (v/c= 0.83)
Fixed 15761.0 (2671.1) N/A 113.5 (33.3) N/A 1.1 (0.08)
Adaptive 14940.6 (2428.3) −5.2 110.1 (32.4) −2.9 6.3 (0.13)
OC 11981.6 (2095.7) −24.0 97.9 (26.3) −13.8 1.6 (0.11)
NLP 12056.0 (2143.6) −23.5 99.1 (27.3) −12.6 886.6 (82.89)

Demand level: 800 veh/h/lane (v/c= 0.97)
Fixed 31729.2 (2255.9) N/A 159.6 (14.36) N/A 1.7 (0.07)
Adaptive 31549.0 (2541.1) −0.6 157.0 (13.77) −1.6 6.6 (0.08)
OC 28381.4 (2116.5) −10.6 150.1 (9.1) −6.0 2.3 (0.11)
NLP 27635.8 (1996.4) −12.9 150.4 (9.0) −5.8 1529.9 (111.23)

a v/c ratio is calculated assuming an 1800 veh/h/lane saturation flow rate and effective green time is equal to actual green time.
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plan. The gaps between each trajectory block remain the same over cycles, which suggests no oversaturation in this case. It is well
known that vehicle delay increases dramatically under oversaturated traffic conditions, which can be avoided because of the
increased capacity.

2. Both vehicle delay and emissions are reduced in the “OC” and “NLP” scenarios compared to the “Fixed” and “Adaptive” scenarios
by as much as 24.0% and 13.8%, respectively. More benefits are shown under high demand levels. Compared to medium and
near-saturated demand levels, both signal optimization and vehicle trajectory control have more flexibility in terms of green time
allocation and intersection capacity utilization.

3. The vehicle delays in the “OC” and “NLP” scenarios are similar. But the “OC” scenario generates lower emissions than the “NLP”
scenario in all cases. In both vehicle trajectory optimization problems, vehicle delay is formulated as a constraint, because the
arrival time at the intersection is fixed through trajectory control. As long as a feasible solution can be found, both problems
generate similar vehicle delays. However, emissions are formulated as the objective function, whose value depends on the quality
of the solution. The approximation model is an NLP problem, and no global optimality is guaranteed. In spite of the simplified
objective function in the optimal control formulation, the analytical solutions still outperform those generated using the emission
model as the objective function.

4. The execution time differs among the four scenarios. The “Fixed”, “Adaptive”, and “OC” scenarios have similar execution times
while the “NLP” scenario requires significantly longer time. In the “NLP” scenario, a long execution time is observed due to the
difficulty in dealing with nonlinearity. On the contrary, the analytical solution from the optimal control formulation reduces
computational time notably.

The results have validated the use of the simplified objective function instead of the exact but complex emission model in terms of
both computational time and solution performance.

4.3. Sensitivity analysis

In the vehicle trajectory control, the final speed (vtf ) and the maximum acceleration/deceleration rate (aU/aL) are the most
important parameters. To further analyze the impacts of these parameters, two sensitivity analyses are performed.

In the first sensitivity analysis, vtf varies from 5m/s to 14m/s with an increment of 1m/s. The maximum final speed is 14m/s,
the same as the free flow speed. The three demand levels are tested as shown in Fig. 8. When the demand level is 500 veh/h/ln
(Fig. 8(a)), final speeds have no significant impacts on vehicle delay. This is because the time gaps between subsequent vehicles are
relatively large and the lower flow rate caused by lower final speed of the leading vehicle can be easily absorbed by the gaps. As a
result, following vehicles are not impacted. When demand increases and the final speed is low, as shown in Fig. 8(b) and (c), average
vehicle delay increases significantly. Another reason is that a lower final speed of the leading vehicle actually lowers the intersection
capacity, which has more significant influence under higher demand levels. However, the average vehicle delay remains stable at
different demand levels when the final speed is greater or equal to 7m/s, which shows a good stability of the proposed model.

Fig. 7. Capacity increase with trajectory control.

Y. Feng et al. Transportation Research Part C 89 (2018) 364–383

374



The maximum acceleration and deceleration rates influence both the controllability and the comfort of vehicle occupants. In the
second sensitivity analysis, the absolute value of acceleration and deceleration rates vary from 0.6m/s2 to 2.4m/s2 with an incre-
ment of 0.2 m/s2. Fig. 9 shows average vehicle delay and CO2 emissions with different acceleration and deceleration rates under
650 veh/h/ln demand level. Results show that both vehicle delay and emissions increase with the decrease of the absolute value of
maximum acceleration. When the absolute value decreases, the controllability of the vehicle trajectory also decreases. It is more
difficult to control the platoon leading vehicle to the same final speed at the beginning of green. The opposing phase may need to
extend the green time by a few seconds longer to leave enough time for the leading vehicle trajectory control of the current phase, so

Fig. 8. Sensitivity analysis on final speed.

Fig. 9. Sensitivity analysis on acceleration rate.
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that signal timing may not be optimal. However, with a lower maximum acceleration rate, vehicle occupants feel more comfortable.
A trade-off must be made between comfortability and efficiency.

4.4. Extension to standard intersection

We further extend the proposed spatiotemporal control framework to a standard intersection with eight phases following the dual-
ring barrier structure. We assume that vehicles of different movements are generated on their target lanes so that lane changings are
not needed. From the analysis of the simple two-phase intersection, it can be seen that fixed-time control has significantly worse
performance than adaptive control. NLP generates very similar vehicle trajectories with the optimal control but needs much longer
execution time. As a result, we only compare adaptive control (Adaptive) and optimal control (OC) for the standard intersection. The
baseline traffic demand levels are set to 150 veh/h/lane for phase 1 and 5, 400 veh/h/lane for phase 2 and 6, 100 veh/h/lane for
phase 3 and 7, and 300 veh/h/lane for phase 4 and 8. Note that the traffic demands are not balanced for the two arterials. To simulate
different traffic demand levels, the volume of each phase is incremented every 25 veh/h/lane for left turn phases and 50 veh/h/lane
for through phases. Totally four demand levels are generated. Other simulation parameters are set to be the same as in Section 4.1.
Table 3 shows the comparison of total vehicle delay, and CO2 emissions of the two scenarios under different traffic demand levels.
Results of all scenarios are the mean and standard deviation (value in parentheses) of five different random seeds. From Table 3, we
can see a similar pattern that the joint control method performs better under higher demand levels than lower demand levels. Both of
the delay and the CO2 emission reduction increase with the traffic demand. Note that when DP is utilized for signal optimization, the
optimization execution time of the eight-phase intersection does not increase significantly compared to the two-phase intersection.
However, enumeration method used in the previous study (Li et al., 2014) becomes very inefficient since the complexity increases
exponentially with the number of phases.

5. Conclusions and further research

In this paper, we propose a joint control framework for controlling vehicle trajectories and traffic signals simultaneously to
improve the efficiency of intersection operation as well as reduce vehicle emissions in a CAV environment. The control is extended
from one dimension (either spatial or temporal) to two dimensions (spatiotemporal). The joint control framework is formulated as a
two-stage optimization model. A simplified objective function is proposed in the vehicle trajectory control model to obtain analytical
solutions. Therefore, the two-stage problem can be solved efficiently. Only platoon leading vehicles are controlled. Simulation results
show that the proposed joint control framework is able to reduce both vehicle delay and emissions under a variety of demand levels.
The simplified objective function is validated, which generates comparable results to the MOVES emission model but with sig-
nificantly reduced computational time.

This paper provides a theoretical foundation for controlling traffic signals and vehicle trajectories cooperatively. Trajectories
generated from the proposed model can be considered at a strategic level and served as the input to lower level vehicle models which
consider mass and powertrain. One of the major work for further research is to focus on the mixed traffic condition where not all
vehicles are controllable. It is also the main reason why a leading vehicle control strategy is proposed, so that it can be extended to
the mixed traffic condition more easily.
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Table 3
Comparison of vehicle delay, CO2 emission of a standard eight phase intersection.

Scenario Delay (s) % CO2 emission (kg) %

Demand level: 150/400/100/300
Adaptive 16313.6 (1223.3) N/A 136.4 (8.4) N/A
OC 15508.2 (1138.6) −4.9 129.7 (8.0) −4.9

Demand level: 175/450/125/350
Adaptive 25637.4 (3627.9) N/A 185.1 (18.7) N/A
OC 22979.2 (3637.4) −10.4 173.0 (18.9) −6.5

Demand level: 200/500/150/400
Adaptive 37138.8 (4622.1) N/A 237.8 (25.8) N/A
OC 32642.6 (4246.9) −12.1 216.6 (21.6) −8.9

Demand level: 225/550/175/450
Adaptive 55467.0 (4617.2) N/A 327.1 (23.5) N/A
OC 48153.8 (4900.3) −13.2 292.4 (22.3) −10.6
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Appendix A

The PMP is applied to derive the analytical solution of the optimal control problem with Eq. (5) as the objective function and Eqs.
(6)–(9) as the constraints.

The Hamiltonian function is introduced:

= + = + +X λ λ XH t t u t F v t u t t f t u t u t λ t v t λ t u t( ( ), ( ), ( )) ( ( ), ( )) ( )· ( ( ), ( )) | ( )| ( ) ( ) ( ) ( )x v (26)

where =λ t λ t λ t( ) [ ( ), ( )]x v . is the Lagrange multiplier vector and its elements are the costates of the system; X(t)= [x(t), v(t)]T is the
state vector.

Based on the problem, the PMP states that the optimal state trajectory X∗(t) and the optimal control u∗(t) should fulfill the
following conditions (27)–(29):
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+ ⩽ + ∈ −∗ ∗u t λ t u t u t λ t u t u t a a| ( )| ( ) ( ) | ( )| ( ) ( ), ( ) [ , ]v v L U (28)

+ + = + + =∗ ∗ ∗ ∗ ∗ ∗u t λ t v t λ t u t u t λ t v t λ t u t Const| ( )| ( ) ( ) ( ) ( ) | ( )| ( ) ( ) ( ) )x v x f f v f f (29)

The optimal control ∗u t( ) which depends on costate λ t( )v can be derived from Eq. (28). If < −λ t( ) 1v , then only =∗u t a( ) U can satisfy
Eq. (28). If >λ t( ) 1v , then only = −∗u t a( ) L can satisfy Eq. (28). If <λ t| ( )| 1v , then only =∗u t( ) 0 can satisfy Eq. (28). If =λ t( ) 1v ,
then any non-positive value of ∗u t( ) can satisfy Eq. (28). Similarly, if = −λ t( ) 1v , then any non-negative value of ∗u t( ) can satisfy Eq.
(28). In summary, the optimal control ∗u t( ) can be expressed in Eq. (30) and Fig. 10.
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To further analysis the optimal control trajectory, the costates expressed in the partial differential equations can be solved as

= =λ t λ C( ) (0)x x (31)

= −λ t λ λ t( ) (0) (0)v v x (32)

Based on the values of the costates, two different control situations: ordinary control and singular control can be identified.

A.1. Situation I: Singular control

If = =λ t λ( ) (0) 0x x , then =λ t λ( ) (0)v v is a constant. From Eq. (29), we can get

+ =∗ ∗u t λ t u t Const| ( )| ( ) ( )v (33)

If =λ t( ) 1v or = −λ t( ) 1v , then ∗u t( ) can be any non-positive or non-negative values within the boundaries and Eq. (33) is constantly

v(t)

u*(t)

-1
1

aU

-aL

Fig. 10. Optimal control solution.
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to be zero in both cases.
To present the optimal control in the cases when =λ t( ) 1v or = −λ t( ) 1v , we define a set of non-negative continuous functions:

= ⩽ ⩽ ∀ ∈+W w t w t a t t{ ( )|0 ( ) , [0, ]}f (34)

The optimal control ∗u t( ) can be presented as

= −∗u t sgn λ w t( ) { (0)} ( )v (35)

where sgn{} is the sign function, a= aU if = −λ t( ) 1v and a= aL if =λ t( ) 1v .

A.2. Situation II: Ordinary control

If = ≠λ t λ( ) (0) 0x x , then = −λ t λ λ t( ) (0) (0)v v x which is a linear function of time t. Nine control scenarios (S I to S IX) can be
identified based on the initial and final values of λ t( )v as shown in Fig. 11. The nine scenarios are expressed below:

S I: {−aL } S II: { aU } S III: {0}

S IV: {0, −aL } S V: { aU , 0} S VI: { aU , 0, −aL }
S VII: {−aL, 0} S VIII: {0, aU } S IX: {−aL, 0, aU }

Three ranges of λ t( )v are identified based on the critical values in Eq. (30): >λ t( ) 1v , < −λ t( ) 1v , <λ t| ( )| 1v . For example, in control
scenario S IV, the value of λ t( )v starts from the range where <λ t| ( )| 1v and ends with the range where >λ t( ) 1v . As a result, two
segments can be identified: constant speed and deceleration. It can be seen from the figure that at most three-segment control
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Fig. 11. Ordinary control – nine scenarios.
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scenario can be identified (S VI and S IX). The number of segments can also be two (S IV, S V, S VII, S VIII) or one (S I, S II, S III).
If = =λ t λ( ) (0) 0x x and = ≠ ±λ t const( ) 1v , then the value of ∗u t( ) is fixed which keeps Eq. (33) a constant. Depending on the

value of λ t( )v , the optimal control belongs to scenarios S I, S II or S III.
To further analyze different control cases, the phase plane diagram is drawn under different initial states and transition times. The

phase plane diagram of the system is shown in Fig. 12.
γaL and γaU are state trajectories passing the final state (L, vtf) with scenarios S I: {−aL} and S II: {aU} respectively, which serve as

the boundary trajectories (maximum acceleration and maximum deceleration all the time). vaL and vaU are the initial vehicle speeds if
the control trajectories follows the boundary trajectories and they can be calculated as

= +v La v2a
L

tf
2L (36)

= − − ⩾v v La v La2 (assume 2 0)a tf
U

tf
U2 2U (37)

Based on different initial state (0, v0), and transition time tf, different cases and their corresponding optimal control trajectories are
investigated.

Case 1: >v va0 L or <v va0 U

No feasible solution can be found in Case 1. It is obvious that if the initial speed of the vehicle is too fast or too slow, even with
maximum deceleration or acceleration, the vehicle is not able to reach the final state. In fact, any initial states that are out of the area
surrounded by points (0, vaL), (0, vaU) and (L, vtf), can’t be transited to the final state.

Case 2: =v va0 L

Case 2.1 =t tf a
cri
L

If =v va0 L, the feasible control trajectory may exist if =
−

tf
v v

a
aL tf

L , noted as t
a
cri
L . t

a
cri
L is the minimum time required to reduce the

initial speed v0 to the final speed vtf . In this case, control scenario S I: {−aL} is applicable. The state trajectory of this control scenario
is shown in Fig. 13(a).

Case 2.2 ≠t tf a
cri
L

If =v va0 L and ≠t tf a
cri
L , then no feasible solution can be found since the distance will exceed the final position ( >t tf a

cri
L ) or the

speed can’t be reduced to the final speed ( <t tf a
cri
L ).

Case 3: < <v v vtf a0 L

In this case, at least two control segments are required.

Case 3.1 =t tf a
L
L

t
a
L
L is defined as the lower time boundary (minimum time) to reach the final state without acceleration. This case results in

control scenario S IV: {0, −aL}, which maintains a higher constant speed segment at first with a shorter transition time. The state

v

x

(L,vtf)

(0,vaL)

(0,vaU)

aL

aU

Fig. 12. Phase plane diagram of the system.
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trajectory of this control scenario is shown in Fig. 13(b). = +
−

t
a
L L

v
v v

v a

( )

2L
tf
L0

0 2

0
can be solved based on the following equations:

=
−

t
v v

as
tf

L
0

(38)

= −t t tc f s (39)

= −d v t a t1
2s s

L
s0
2

(40)

=d v tc c0 (41)

+ =d d Ls c (42)

where ts and tc are the time spent in the deceleration segment and constant speed segment, respectively; ds and dc are the distances
traveled in the deceleration segment and constant speed segment, respectively.

Fig. 13. Phase plane diagram under different control scenarios.
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Case 3.2 =t tf a
U

L

t
a
U

L is defined as the upper time boundary (maximum time) to reach the final state without decelerating below the final speed vtf.
This results in control scenario S VII: {−aL, 0}, which has a lower constant speed segment with a longer transition time. The state

trajectory of this control scenario is shown in Fig. 13(c). = −
−

t
a
U L

v
v v

v a

( )

2L tf

tf

tf L
0 2

can be calculated similarly as t
a
L
L.

Case 3.3 < <t t t
a
L

f a
U

L L

In this case, two-segment control can’t transit vehicle trajectory from the initial state to the final state, three-segment control
scenario such as {−aL, 0, −aL } is required as shown in Fig. 13(d). The control scenario in this case doesn’t belong to any of the nine
scenarios in ordinary control. The deceleration rate switches between −aL and 0 which only belongs to the singular control situation.
The speed of the constant speed segment should be between v0 and vtf in order to fulfill the transition time requirement. The number
of control segments is flexible since the singular control can switch multiple times between −aL and 0. However, if three-segment
control is implemented, then the switch time t1 and t2 can be solved uniquely with the constraint of <t t1 2 as shown in Fig. 3 and Eqs.
(10) and (11). Similar calculation can also be applied to other three-segment scenarios (e.g. S IX: {−aL, 0, aU }). If more than three
segments are implemented, then more equations need to be solved which increases the complexity, but doesn’t improve the quality of
the solution. As a result, in this study, we limit the number of trajectory segments to be at most three segments. In fact, control
scenario {0, −aL, 0} is also a feasible singular control scenario and it is optimal.

Case 3.4: < ⩽t t t
a
U

f fea
U

L

tfea
U is defined as the upper boundary of transition time when a feasible solution exists. The state trajectory when =t tf fea

U is shown
in Fig. 13(e). It is a two-segment control with a maximum deceleration segment followed by a maximum acceleration segment to
maximize the transition time. This is a bang-bang control scenario {−aL, aU} which neither belongs to ordinary control nor singular
control. If the transition time tf is strictly smaller than tfea

U , then the control scenario is a three-segment control S IX: {−aL, 0, aU} as
shown in Fig. 13(f). However, both of the control scenario S IX and bang-bang control are not optimal. Intuitively, the vehicle has to
decelerate below the final speed and then accelerate which results in more speed fluctuation. The objective function calculated from
this control scenario is greater than the optimal value J∗ by ɛ, which is ɛ-optimal control: given an initial state (0, v0) and a final state
(L, vtf), if a feasible control trajectory exists and the value of its corresponding objective function is ɛ+ J∗.

Case 3.5: ⩽ <t t tfea
L

f a
L
L

tfea
L is defined as the lower boundary of transition time when a feasible solution exists. The trajectory when =t tf fea

L is shown in
Fig. 13(g). It is a two-segment control with a maximum acceleration segment followed by a maximum deceleration segment to
minimize the transition time. Similar with the previous case, this solution is a bang-bang control scenario {aU, −aL}. When the
transition time tf is strictly greater than tfea

L then the control scenario is a three-segment control S VI: {aU, 0, −aL}. Again, both of
them are not optimal control, but ɛ-optimal control.

Case 3.6: >t tfea
L

f or <t tfea
U

f

No feasible solution can be found in this case.

Case 4: =v vtf0
Case 4.1: =t L v/f 0

In this case, the vehicle only needs to keep a constant speed, and no acceleration or deceleration is required. One-segment control
scenario S III: {0} is applicable as shown in Fig. 13(h).

Case 4.2: ⩽ ⩽t t L v/fea
L

f 0

In this case, the vehicle needs to accelerate and then decelerate to fulfill the transition time constraint. Therefore, the three-
segment ɛ-optimal control S VI: {aU, 0,−aL} or the two-segment bang-bang control {aU,−aL} are applicable. The ɛ-optimal control is
shown in Fig. 13(i).

Case 4.3: ⩽ ⩽L v t t/ f fea
U

0

In this case, the vehicle needs to decelerate and then to accelerate to fulfill the transition time constraint. Therefore, the three-
segment ɛ-optimal control S IX: {−aL, 0, aU} or the two-segment bang-bang control {−aL, aU} are applicable. The ɛ-optimal control is
shown in Fig. 13(j).
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Case 4.4: >t tfea
L

f or <t tfea
U

f

No feasible solution can be found in this case.

Case 5: ⩽ <v v va tf0U

The scenarios in Case 5 are similar to Case 3. To avoid redundancy, the analysis of Case 5 is skipped.
All previous cases assume that = − ⩾v v La2 0a tf

U2U . In fact, if the final location L is far away and/or the final speed vtf is low, the
trajectory γaU may intersect with x axis instead of v axis as shown in Fig. 14. The intersection point is noted as xcri which can be
calculated as

= −x L v a/2cri f
U2

(43)

Let the trajectory with maximum deceleration rate −aL and passing xcri be γaL′. γaL′ intersects with v axis at (0, v0cri), where

= − <v La v a a v2 /cri L
f

L U
a0

2 L (44)

If ⩽v vcri
0 0 , then the transition time tf doesn’t have an upper boundary since the vehicle speed can drop to (near) zero and the cruise

time (constant speed) can be very long. That means tf can be greater than tfea
U . The control strategies in this case is similar to previous

analysis expect that the constraint ⩾t tfea
U

f can be released.
It is noted that in some cases, the feasible control solution doesn’t exist. Section 4 provides the illustration ofhow to prevent such

conditions by limiting the control distance.
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