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a b s t r a c t 

Existing traffic signal control systems only allocate green time to different phases to 

avoid conflicting vehicle movements. With advances in connected and automated vehi- 

cle (CAV) technologies, CAV trajectories not only provide more information than existing 

infrastructure-based detection systems, but also can be controlled to further improve mo- 

bility and sustainability. This paper presents a mixed integer linear programming (MILP) 

model to optimize vehicle trajectories and traffic signals in a unified framework at iso- 

lated signalized intersections in a CAV environment. A new planning horizon strategy is 

applied to conduct the optimization. All vehicle movements such as left-turning, right- 

turning and through are considered. Phase sequences, green start and duration of each 

phase, and cycle lengths are optimized together with vehicle lane-changing behaviors and 

vehicle arrival times for delay minimization. Vehicles are split into platoons and are guar- 

anteed to pass through the intersection at desired speeds and avoid stops at stop bars. 

Exact vehicle trajectories are determined based on optimized vehicle arrival times. For the 

trajectory planning of platoon leading vehicles, an optimal control model is implemented 

to minimize fuel consumption/emission. For following vehicles in a platoon, Newell’s car- 

following model is applied. Simulation results validate the advantages of the proposed con- 

trol method over vehicle-actuated control in terms of intersection capacity, vehicle delays, 

and CO 2 emissions. A sensitivity analysis is conducted to show the potential benefits of a 

short minimum green duration as well as the impacts of no-changing zones on the opti- 

mality of the proposed model. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

1. Introduction 

With increasing traffic demand, vehicles suffer from severe traffic congestions, which cause environmental problems and

economic losses ( Koonce et al., 2008 ). Intersections are usually considered the bottlenecks for traffic flows in urban trans-

portation networks. As reported in National Transportation Operations Coalition (NTOC) (2012) , delays at traffic signals on

major roadways were estimated to be 295 million vehicle-hours. Improving traffic signal operations is supposed to have a
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significant impact on the efficiency of transportation systems in dense urban areas, potentially more effective than any other

operational measures in the traffic engineering toolkit ( NTOC, 2012 ). 

Traditional traffic control strategies include fixed-time, vehicle-actuated, and adaptive signal control. Fixed-time control 

utilizes historical traffic data to calibrate pre-set signal parameters such as phase sequences, cycle lengths, and green splits.

Vehicle-actuated and adaptive signal control apply infrastructure-based detectors to collect real-time traffic data and adjust

signal timings according to time-variant traffic demand. Abundant studies have been dedicated to traditional signal control

including stage-based ( Allsop, 1981; Webster, 1958 ), group-based (phase-based) ( Heydecker, 1992; Silcock, 1997 ), and lane-

based approaches ( Wong and Heydecker, 2011; Wong and Wong, 2003a, b ). In the stage-based approach, compatible traffic

movements are grouped and move together in the same time span, called a stage. Green time is then allocated to each

stage. In the group-based approach, there is no need to specify a stage structure. Green time is directly allocated to each

traffic movement. In the lane-based approach, signals can be optimized together with lane markings to further ameliorate

traffic condition. 

Thanks to the advances of connected and autonomous vehicle (CAV) technologies, communications between vehicles

(V2V) and between vehicles and infrastructure (V2I) provide a new source of data for traffic control. This bilateral com-

munication renders it possible to convey traffic information (e.g., signal timings or speed advisory) from intersections to

vehicles in real time for trajectory planning as well as collect detailed vehicle trajectory data (e.g., speeds and locations) for

signal control. The new technologies have the potential to prompt new opportunities for traffic control in a more effective

way. 

One research area tried to incorporate real-time CAV trajectory information into signal optimization, in addition to

infrastructure-based detector data. Starting with a simplified two-approach intersection, Ilgin Guler et al. (2014) proposed an

algorithm by combining information from CAVs and loop detectors to optimize the sequences of vehicles discharging from

the intersection to minimize vehicle delays and stops. The time a CAV entered the zone of interest and the distance from

the intersection were recorded to estimate virtual arrival time and queue length. Feng et al. (2015) applied the standard

North American National Electrical Manufacturing Association (NEMA) dual-ring, eight-phase structure for signal optimiza- 

tion using CAV trajectories. The trajectory information of connected vehicles was also utilized to estimate the locations and

speeds of unequipped vehicles. The phase sequence and duration within each barrier group were formulated in a two-

level optimization problem. Dynamic programming (DP) was adopted to solve the problem. He et al. (2012) investigated a

platoon-based arterial signal optimization model for different travel modes on the basis of real-time platoon request data

and signal status. A mixed-integer linear program (MILP) was formulated to solve the problem with flexible cycle lengths

and offsets. In addition to delays in the objective function, other performance metrics have also been explored such as

weighted cumulative waiting time (WCWT) ( Datesh et al., 2011 ) and cumulative travel time (CTT) ( Lee and Park, 2012 ). 

Another research area assumes that signal timings are fixed and known. Signal information is used to optimize CAV

trajectories by controlling vehicle speeds or acceleration rates to reduce fuel/energy consumption, emission, delay and so

on. Typically, an optimal control problem is formulated regarding locations and speeds as state variables and accelera-

tion \ deceleration as control variables ( Kamal et al., 2013 ). However, it is generally difficult to solve an optimal control

model efficiently with complex objective and constraint formulations. One direct approach is to discretize time and state

space ( Miyatake et al., 2011 ). The optimal control problem is then converted into a multistage decision process so that DP

can be applied. Another effective approach is to divide a vehicle trajectory into several segments with constant accelera-

tion/deceleration to reduce computational burden. He et al. (2015) and Wu et al. (2015) built approximation models with

three trajectory segments. Vehicles were supposed to accelerate/decelerate to an optimal cruising speed; then travel at this

speed; and finally accelerate/decelerate to a final speed when passing through the intersection. Therefore, the optimal con-

trol problem was transformed into a non-linear optimization problem with much fewer decision variables. Nevertheless,

Wan et al. (2016) argued that the three-segment trajectory was impractical because it was uncomfortable to the occu-

pants and potentially disruptive to the traffic. Instead, a two-segment trajectory was more implementable although it might

be sub-optimal. A vehicle either accelerated with the maximum torque or decelerated with the engine off to a constant

speed and then cruised past the intersection. Further, Rakha and Kamalanathsharma (2011) and Kamalanathsharma and

Rakha (2013) took the downstream of an intersection, where a vehicle restored its speed, into consideration to include fuel

consumption objective in the formulation. Besides analytical approaches, Wang et al. (2014a) proposed a fast numerical so-

lution algorithm based on Pontryagin’s Minimum Principle (PMP) to solve an optimal control problem for different control

objectives. The algorithm was then extended to a corporative control problem ( Wang et al., 2014b ). 

To the best of our knowledge, there are limited studies on the integrated optimization of traffic signals and vehicle

trajectories in a unified framework. Malakorn and Byungkyu (2010) developed a cooperative system where a vehicle tra-

jectory included an accelerating/decelerating segment and a cruising segment. Signals could switch dynamically between

serving major and minor streets. Optimal arrival time of each vehicle was identified, which then determined the accelera-

tion/deceleration rate within the first segment. In contrast, Li et al. (2014) assumed a generic optimal vehicle trajectory of

four segments. The first and third segments had constant acceleration/deceleration rates, while the second and the fourth

segments had constant speeds. Signals were optimized by enumerating all feasible signal plans. However, models of both

studies were implemented at simplified intersections with two single-lane through approaches, which is unrealistic, espe-

cially in an urban traffic network. The previous signal optimization algorithms can hardly handle complex phase structures,

and the optimality of trajectory segmentation was not guaranteed. Moreover, lane changing behaviors are not considered

due to simplified settings of intersection geometry. 
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Fig. 1. An intersection with four arms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Different from signal-based traffic control, novel “signal free” intersections were proposed where traffic signals were

removed on the basis of 100% fully CAVs. Typically, vehicle trajectories are organized at an intersection by slot-based algo-

rithms. A notable slot-based system consists of an intersection manager and vehicle agents ( Dresner and Stone, 2004, 2007,

2008 ). An intersection is divided into a grid of several tiles which can only be occupied by one vehicle at one time. Vehicle

agents send requests to the intersection manager to reserve space-time within the intersection. The intersection manager

then determines whether to accept or reject the requests according to a control policy. Usually the “first come, first served”

(FCFS) rule is applied. Nevertheless, vehicles are not guaranteed to avoid stops at stop bars. To improve efficiency, planning

techniques were applied to optimize vehicle arrival times and speeds passing the intersection but the choice of vehicle tra-

jectories seemed arbitrary ( Au and Stone, 2010 ). Further, a batch strategy with adaptive vehicle platooning was developed

for high traffic demand ( Tachet et al., 2016 ). Actually, the slot-based control focuses on vehicle management within an in-

tersection area and does not consider vehicle trajectories before arrival of the intersection. For example, vehicle trajectories

are assumed to be fixed to track reservation distance. In essence, the slot-based control does not ensure the optimality in

terms of vehicle platooning. 

To address these research deficiencies, this paper presents an MILP model to optimize traffic signals and vehicle trajec-

tories at isolated urban intersections in a unified framework. Phase sequences, green start and duration of each phase, and

cycle lengths are optimized together with vehicle lane-changing behaviors and vehicle arrival times in the MILP model. Ve-

hicles are guaranteed to pass through an intersection at desired speeds and avoid stops at stop bars. A new planning horizon

strategy is applied to conduct the optimization. Platoons in each lane are identified based on the optimization results. Exact

vehicle trajectories are then generated by optimal control models and car-following models. The trajectory of each platoon

leading vehicle is optimized by an optimal control model with the objective to minimize fuel consumption and emission.

Lower and upper bounds of arrival time constraints are imposed to the MILP model in order to generate feasible trajecto-

ries. Clearance time is considered to eliminate conflictions between incompatible vehicle movements within an intersection

area. The proposed MILP model is similar with slot-based “signal free” models if the minimum green time constraint is re-

moved. However, the proposed model optimizes vehicle trajectories at the upstream of an intersection instead of managing

trajectories within an intersection area. 

The remainder of this paper is structured as follows. Section 2 presents the problem and the key notations. Section 3 gen-

erates the trajectories of vehicles by lane based on vehicle arrival times at stop bars as well as provides arrival time con-

straints for the MILP model. In this way, the trajectory generation of vehicles in one lane is equivalent to the determination

of arrival times. Section 4 introduces the MILP model in detail that optimize signals, vehicle arrival times, and vehicle lane

choices. Section 5 conducts numerical studies and sensitivity analysis. Finally, conclusions and recommendations are deliv-

ered in Section 6 . 

2. Notations and problem description 

2.1. Notations 

Before presenting the model, two types of notations including parameters and control variables are introduced. 

2.1.1. Parameters 

Several types of parameters are defined in this section including geometric parameters, traffic parameters, vehicle tra-

jectory parameters, and signal parameters. The geometric parameters which are based on the layout of an intersection are

assumed to be given. Fig. 1 shows the details of one arm of a typical four-arm intersection as an example. Vehicle trajec-

tories and signals are updated each time optimization is conducted, denoted as time t . Vehicles that pass a stop bar in
0 
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Table 1 

Notations and parameters. 

General notations 

i : Arm index 

k : Approach lane index in each arm 

( i, j ): Traffic flow from arm i to arm j , which is also called phase 

ω: Vehicle index 

t 0 : Time when an optimization process starts, s 

M: A sufficiently big number 

Geometrical parameters 

I : Set of arms at the intersection 

ζ i, j 

k 
: 1, if lane k in arm i is used by traffic flow ( i, j ); 0, otherwise 

L i : Control zone in arm i in which vehicle trajectories are to be controlled, m 

L p 
i 

: No-changing zone in arm i in which vehicles keep their previously optimized trajectories, m 

K i : Set of approach lanes in arm i ; K i = {1, …, | K i |}, where | K i | is the size of K i 
K ω : Set of permitted lanes for vehicle ω, which are the dedicated lanes for the movement direction of vehicle ω 

K 0 : Set of lanes used by traffic flows having right of way at time t 0 , K 0 = { k | ζ i, j 

k 
= 1 , k ∈ K i , ( i, j ) ∈ �0 } 

Traffic parameters 

�: Set of all traffic flows at the intersection 

�ic : Set of incompatible traffic flow pairs that cannot have right of way at the same time 

�0 : Set of compatible traffic flows that are receiving green at time t 0 
�p : Set of the traffic flows whose green ended before time t 0 
�i : Set of vehicles in arm i at time t 0 
�p 

i 
: Set of vehicles in the no-changing zone in arm i at time t 0 , �

p 
i 

⊂ �i 

�ω : Set of vehicles ahead of vehicle ω ∈ �i at time t 0 , whose permitted lane set overlaps with that of ω; that is, 

�ω = { ω 

′ | K ω ′ ∩ K ω � = ∅ , x ω ′ 0 < x ω 0 , ω 

′ ∈ �i } 
Vehicle trajectory parameters 

x ω 0 : Distance between vehicle ω and its ahead stop bar at time t 0 , m 

v ω 0 : Speed of vehicle ω at time t 0 , m/s 

δ′ ω 
k : 1, if vehicle ω is in lane k at time t 0 ; 0, otherwise 

t ′ ω f : Previously optimized arrival time of vehicle ω, s 

t ω e : Generating time of vehicle ω, s 

t ω 
l 

: Time of the previous lane changing behavior of vehicle ω, s 

�t min 
l 

: Minimum time interval between two lane changing behaviors of a vehicle, s 

v ω 
f 

: Desired speed of vehicle ω passing through the intersection, m/s 

v max : Speed limit, m/s 

τω : Time displacement of vehicle ω in Newell’s car-following model, s 

d ω : Space displacement of vehicle ω in Newell’s car-following model, m 

a L : Absolute value of the maximum comfortable deceleration rate, m/s 2 

a U : Value of the maximum comfortable acceleration rate, m/s 2 

α1 : Weight of total vehicle delay in the objective 

Signal parameters 

N : Number of signal cycles in the signal optimization horizon 

�d : Tolerance of solution quality degradation, s 

α2 : Weight of cycle lengths in the objective 

t s : Start time of the signal optimization horizon, s 

θ p 
i, j 

: Green start for inactive traffic flow ( i, j ) ∈ �p in the current/first cycle. Inactive flow means the green time for this traffic flow was 

already terminated by time t 0 , s 

φp 
i, j 

: Green duration for inactive traffic flow ( i, j ) ∈ �p in the current/first cycle, s 

θ0 
i, j 

: Green start for active traffic flow ( i, j ) ∈ �0 in the current/first cycle, s 

g i, j 
min 

: Minimum green duration for traffic flow ( i, j ), s 

π i,j, l, m : Clearance time between incompatible traffic flows, defined as the earliest time when traffic flow ( l, m ) has right of way after traffic 

flow ( i, j ) terminates, s 

z n,s 
i, j,l,m 

: Relative time between green starts measured from traffic flow ( i, j ) to ( l, m ) in n th cycle, s 

z n,e 
i, j,l,m 

: Relative time between green ends measured from traffic flow ( i, j ) to ( l, m ) in n th cycle, s 

 

 

 

the same lane in the same cycle are regarded as one platoon. The first vehicle in a platoon is the leading vehicle and the

remaining vehicles in the same platoon are following vehicles. Main parameters are summarized in Table 1 . 

2.1.2. Control variables 

Two types of control variables are defined. Let V = ( T, S ) be the set of all variables, where T is the subset of vehicle

trajectory variables; and S is the subset of signal variables. The control variables are updated after each optimization process.

Main control variables are summarized in Table 2 . 
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Table 2 

Control variables. 

Vehicle trajectory variables 

δω 
k 

: 1, if vehicle ω is in lane k ; 0, otherwise 

λω : 1, if vehicle ω maintains its previously optimized trajectory; 0, otherwise 

γ ω : 0, if the trajectory of vehicle ω is not affected by its all preceding vehicles and is to be updated; 1, otherwise 

μω : 0, if vehicle ω decides to change lanes; 1, otherwise 

ηω, ω ′ : 0, if vehicles ω and ω 

′ are in the same lane; 1, otherwise 

x ω ( t ): Distance between vehicle ω and the ahead stop bar at time t , m 

l ω ( t ): Travelled distance by vehicle ω from time t 0 to t , m 

v ω ( t ): Speed of vehicle ω at time t , m/s 

a ω ( t ): Acceleration/deceleration rate of vehicle ω at time t , m/s 2 

t ω 
f 

: Arrival time of vehicle ω at the intersection, s 

�t ω : Travel time of vehicle ω, s 

βω 
n : 1, if vehicle ω passes through the intersection in n th cycle; 0, otherwise 

Signal variables 

θn 
i, j 

: Green start for traffic flow ( i, j ) in n th cycle, s 

φn 
i, j 

: Green duration for traffic flow ( i, j ) in n th cycle, s 

�n 
i,k 

: Green start in lane k of arm i in n th cycle, s 

�n 
i,k 

: Green duration in lane k of arm i in n th cycle, s 

�n 
i, j,l,m 

: 1, if the green start of traffic flow ( l, m ) immediately follows that of traffic flow ( i, j ) in n th cycle; 0, otherwise 

C n : Cycle length of n th cycle, s 

Fig. 2. Model framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Problem description 

For a typical intersection, there are three vehicle movements (i.e., left-tuning, through, and right-turning) in each arm.

Each movement has a different desired speed to pass through the intersection for safety concerns. As shown in Fig. 1 , in

each arm, the approach lane index is incremented from the left most lane. Each approach lane is dedicated to one vehicle

movement. The distance between a vehicle and the stop bar at time t is denoted as x ω ( t ). L i is the control zone in arm i in

which vehicle trajectories can be optimized. L 
p 
i 

is the no-changing zone in which vehicles keep their previously optimized

trajectories. That is, only the trajectories of vehicles that are outside the no-changing zone will be updated over time. The

no-changing zone is designed to reduce computational burden but at the cost of optimality. 

The task is to integrate vehicle trajectory planning into traffic signal optimization in a unified framework to minimize

vehicle delays. The model framework is shown in Fig. 2 . The trajectory planning serves for two purposes: 1) build the

relationships between vehicle arrival times in the same lane, which helps build the arrival time constraints (e.g., upper and

lower bounds) in the MILP model; 2) generate trajectories for vehicles in the same lane given their arrival times, which are

supposed to be optimized in the MILP model. Note that no exact vehicle trajectories or platooning are needed in building the

constraints of arrival times in the MILP model. The outputs of the optimization model include signals, vehicle lane choices,

and vehicle arrival times. Platoons, i.e., the vehicles that pass the stop bar in the same lane in the same cycle, are identified

based on the optimization results. However, only vehicle lane choices and vehicle arrival times are needed in planning exact

trajectories (i.e., acceleration, speed, and location profiles) for vehicles in each lane. Platooning is not necessarily needed

when generating exact vehicle trajectories. 
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3. Vehicle trajectory planning 

This section builds the relationships between arrival times and trajectories for vehicles in the same lane. An optimal

control model is introduced to generate optimal trajectories for platoon leading vehicles with the objective of minimizing

fuel consumption/emission given arrival times. The Newell’s car-following models are used to capture the trajectories of

following vehicles. In this way, the identification of vehicle trajectories is equivalent to determining the arrival times. To

guarantee the feasibility of the optimal control models, this section also helps build the constraints of vehicle arrival times

for the MILP model. 

3.1. Trajectories of platoon leading vehicles 

Vehicles that pass through an intersection in the same lane in the same cycle are regarded as one platoon. The first

vehicle in a platoon is a platoon leading vehicle. Its trajectory is planned with the objective of reducing fuel consump-

tion/emission. The initial state at time t 0 and the final state at the intersection (i.e., location and speed) of each platoon

leading vehicle ω are known. The trajectory control strategy of vehicle ω is formulated as the solution to the following

optimal control problem ( P1 ). An optimal trajectory can be identified given the value of vehicle arrival time t ω 
f 

. It should be

bounded to guarantee the feasibility of P1 . 

P1 : 

min 

a ω ( t ) 

∫ t ω 
f 

t 0 

| a ω ( t ) | dt (1) 

{
˙ l ω ( t ) = v ω ( t ) 
˙ v ω ( t ) = a ω ( t ) 

(2) 

{
l ω ( t 0 ) = 0 

v ω ( t 0 ) = v ω 0 

(3) 

{
l ω 

(
t ω 

f 

)
= x ω 0 

v ω 
(
t ω 

f 

)
= v ω 

f 

(4) 

0 ≤ v ω ( t ) ≤ v max , t 0 ≤ t ≤ t ω f (5) 

−a L ≤ a ω ( t ) ≤ a U , t 0 ≤ t ≤ t ω 
f 

t ω 
f 

fixed 

(6) 

where l ω ( t ) is the distance travelled by vehicle ω from time t 0 to time t . It is different from x ω ( t ) that is the distance

between vehicle ω and the stop bar at time t . The integration over the absolute value of the acceleration rate is used as

the objective function in Eq. (1) for fuel consumption/emission minimization. Although fuel consumption/emission may be

related to both vehicle speeds and acceleration rates ( Jiang et al., 2017; Wang et al., 2014a ), Eq. (1) is used for simplification,

which is a common practice in optimal control theory Naidu, 2002 ). The use of this simplified objective function has also

been validated in Feng et al. (2018) . Eq. (2) describes vehicle dynamics. Eqs. (3) and ( (4) are the constraints of initial and

final vehicle states. Eqs. (5) and (6) are the bounds of vehicle speeds and acceleration rates. The solution to P1 is the

acceleration profile of leading vehicle ω. 

Eq. (5) is the constraint of a state variable (i.e., vehicle speed) in P1 , which makes the optimal control problem difficult

to solve. To address the problem, we classify the condition into two cases depending on whether the upper bound v max in

Eq. (5) will be violated. Fig. 3 shows the trajectories in the two cases with minimum travel time. The possible maximum

speed in Fig. 3 is obtained by accelerating from the initial state ( 0 , v ω 
0 
) and decelerating to the final state ( x ω 

0 
, v ω 

f 
) . In

Fig. 3 (a), the constraint Eq. (5) is never violated and it can be removed from the optimal control problem (P1). In Fig. 3 (b),

the constraint Eq. (5) may be active and then a trajectory segment of cruising is included. 

Case 1: 

If the following condition is true, then the constraint on the upper bound of speed v max in Eq. (5) can be released. That

means in the generated vehicle trajectory, the vehicle speed never reaches v max . 

( v max ) 
2 −

(
v ω 0 

)2 

2 a U 
+ 

( v max ) 
2 −

(
v ω 

f 

)2 

2 a L 
> x ω 0 (7) 

A simplified optimal control problem can be solved analytically. Only the final solutions are shown here. The readers can

refer to Feng et al. (2018) for detailed derivation. 
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Fig. 3. Illustration of two cases: (a) Case 1, and (b) Case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Denote v ω a L 
and v ω a U 

to be the lower and upper of vehicle speeds when the vehicle enters the control zone in each arm

as 

v ω a L 
= 

√ 

2 a L x 
ω 
0 

+ 

(
v ω 

f 

)2 
(8)

v ω a U 
= 

{ √ (
v ω 

f 

)2 − 2 a U x 
ω 
0 
, if x ω 0 ≤

(
v ω 

f 

)2 

2 a U 

0 , otherwise 
(9)

Vehicle ω is controllable when v ω a L 
≥ v ω 

0 
≥ v ω a U 

which is supposed to be satisfied. According to the proposed control strategy,

vehicle ω will maintain controllable until arriving at the intersection. 

Denote �t ω 
L 

and �t ω 
U 

as 

�t ω L = 

v 1 − v ω 0 

a U 
+ 

v 1 − v ω 
f 

a L 

⎛ 

⎝ v 1 = 

√ 

2 a U a L x 
ω 
0 

+ a L 
(
v ω 

0 

)2 + a U 
(
v ω 

f 

)2 

a L + a U 

⎞ 

⎠ (10)

�t ω U = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

+ ∞ , if x ω 0 > 

(
v ω 

f 

)2 

2 a U 
and v ω 0 < 

√ 

2 x ω 
0 

a L −
(

v ω 
f 

)2 

a L 

a U 

v ω 0 − v 1 
a L 

+ 

v ω 
f 

− v 1 
a U 

⎛ 

⎝ v 1 = 

√ 

a U ( v ω 0 ) 
2 + a L 

(
v ω 

f 

)2 

−2 a U a L x 
ω 
0 

a L + a U 

⎞ 

⎠ , otherwise 

(11)

where �t ω 
L 

and �t ω 
U 

are the lower and upper bounds of travel times to reach the intersection to make P1 feasible con-

sidering vehicle dynamics limits (refer to Feng et al. (2018) for detailed derivation). Note that v ω a U 
and �t ω 

U 
are piecewise

functions due to the constraint v ω ( t ) ≥ 0 in Eq. (5) . Therefore, travel time �t ω of the leading vehicle ω can vary within the

following bounds: 

�t ω L ≤ �t ω ≤ �t ω U (12)

The corresponding lower and upper bound of vehicle arrival times at the intersection are thus further specified as 

t 0 + �t ω L ≤ t ω f = t 0 + �t ω ≤ t 0 + �t ω U (13)

The optimal trajectory of a leading vehicle is determined when �t ω or t ω 
f 

is identified (refer to Appendix A for details). 

Case 2: 

If the following condition holds, then the upper bound speed v max may be reached in the generated trajectory: 

( v max ) 
2 −

(
v ω 0 

)2 

2 a U 
+ 

( v max ) 
2 −

(
v ω 

f 

)2 

2 a L 
≤ x ω 0 (14)

The difference between Case 2 and Case 1 is the calculation of the minimum travel time, denoted as �t ′ ω 
L 

instead: 

�t ′ ω L = �t 1 + �t 2 + �t 3 (15)

where 

�t 1 = 

v max − v ω 0 

a 
(16)
U 
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Fig. 4. Possible trajectories of a following vehicle. 

 

 

 

 

 

�t 2 = 

v max − v ω 
f 

a L 
(17) 

�t 3 = 

x ω 0 −
( v max ) 

2 −( v ω 0 ) 
2 

2 a U 
− ( v max ) 

2 −
(
v ω 

f 

)2 

2 a L 

v max 
(18) 

Eq. (16) is the acceleration time from speed v ω 
0 

to v max with the maximum acceleration rate a U . Eq. (17) is the decel-

eration time from speed v max to v ω 
f 

with the maximum deceleration rate a L . Eq. (18) is the cruising time at speed v max .

Therefore, the travel time �t ω of leading vehicle ω in Case 2 is bounded by 

�t ′ ω L ≤ �t ω ≤ �t ω U (19) 

where �t ω 
U 

is calculated in Eq. (11) in Case 1. The arrival time is thus bounded by: 

t 0 + �t ′ ω L ≤ t ω f = t 0 + �t ω ≤ t 0 + �t ω U (20) 

The optimal trajectory can also be generated according to Appendix A when �t ω or t ω 
f 

is determined. 

3.2. Trajectories of following vehicles 

Generally, a following vehicle has two types of trajectories as shown in Fig. 4 . If following vehicle ω is far away from its

preceding vehicle ω 

′ , its trajectory is not affected by its preceding vehicle (Type 1). Otherwise, the trajectory is presented

in Type 2, which is modeled by a car-following model, when following vehicle ω catches up with its preceding vehicle ω 

′ . 
Case 1: Trajectory Type 1 

If vehicle ω follows trajectory Type 1, it is supposed to drive as fast as possible to minimize the delay. The trajectory is

the solution of the following optimal control problem: 

P2 : 

min 

a ω ( t ) 

∫ t ω 
f 

t 0 

1 dt = t ω f − t 0 (21) 

{
˙ l ω ( t ) = v ω ( t ) 
˙ v ω ( t ) = a ω ( t ) 

(22) 

{
l ω ( t 0 ) = 0 

v ω ( t 0 ) = v ω 0 

(23) 

{
l ω 

(
t ω 

f 

)
= x ω 0 

v ω 
(
t ω 

f 

)
= v ω 

f 

(24) 
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0 ≤ v ω ( t ) ≤ v max , t 0 ≤ t ≤ t ω f (25)

−a L ≤ a ω ( t ) ≤ a U , t 0 ≤ t ≤ t ω 
f 

t ω 
f 

fixed 

(26)

The constraints of P2 are the same as those of P1 . The objective Eq. (21) is the minimization of the travel time (i.e.,

delay). Actually, the solution to P2 is a special case of P1 in which the given arrival time t ω 
f 

is the lower bound. Therefore,

the optimal travel time �t ω can be expressed as 

�t ω = 

{ 

�t ω L , if 
( v max ) 

2 −( v ω 0 ) 
2 

2 a U 
+ 

( v max ) 
2 −

(
v ω 

f 

)2 

2 a L 
> x ω 0 

�t ′ ω L , otherwise 

(27)

where �t ω 
L 

and �t ′ ω 
L 

are calculated in Eqs. (10) and (15) . The arrival time at the intersection is 

t ω f = t 0 + �t ω (28)

Case 2: Trajectory Type 2 

For a vehicle ω following trajectory Type 2, Newell’s linear car-following model ( Newell, 2002 ) is applied. It is described

as 

x ω ( t + �t ) = max 

{
x ω 

′ 
( t + �t − τω ) + d ω , 

x ω ( t ) − �x U 

}
(29)

where �t is the time step; �x U is the upper bound of the travel distance considering the maximum speed and acceleration

rate: 

�x U = 

⎧ ⎨ 

⎩ 

v ω ( t ) �t + 

1 

2 

a U �t 2 , if �t ≤ �t ′ 

v ω ( t ) �t ′ + 

1 

2 

a U �t ′ 2 + v max 

(
�t − �t ′ 

)
, otherwise 

(30)

where �t ′ = ( v max − v ω ( t ))/ a U . Therefore, the stationary time headway between a following vehicle and its preceding vehicle

is 

h 

ω = τω + 

d ω 

v ω 
f 

(31)

The arrival time of following vehicle ω is related to that of its preceding vehicle ω 

′ : 

t ω f = t ω 
′ 

f + h 

ω (32)

3.3. Trajectory generation procedure 

Sections 3.1 and 3.2 describe different types of vehicle trajectories for platoon leading vehicles and following vehicles

in the same lane given their arrival times at the intersection. However, a platoon leading vehicle may become a following

vehicle over time and vice versa. In our trajectory generation procedure, it is not necessary to know whether a vehicle is a

leading vehicle or a following vehicle. The trajectories of platoon leading vehicles and following vehicles can be generated

in one procedure. The only information needed is the distribution of vehicles across lanes and their arrival times optimized

from the MILP model, which will be introduced in the following section. 

Given the optimized arrival time t ω 
f 

of vehicle ω in one lane and the current time t 0 (or the optimized travel time

�t ω = t ω 
f 

− t 0 ), the vehicle trajectory type is identified according to the following steps. 

Step 1: If the arrival time remains the same (i.e., t ω 
f 

= t ′ ω 
f 

), then vehicle ω maintains its planned trajectory that is opti-

mized in the previous optimization process and go to Step 4 . Otherwise, go to the next step. 

Step 2: If the arrival time of vehicle ω and its preceding vehicle ω 

′ satisfies t ω 
f 

= t ω 
′ 

f 
+ h ω , then vehicle ω is a following

vehicle and follows trajectory Type 2 in Section 3.2 and go to Step 4 . Otherwise, go to the next step. 

Step 3: Vehicle ω may be a platoon leading vehicle in Section 3.1 or a following vehicle that follows trajectory Type 1

in Section 3.2 . The trajectories in both cases can be determined according to the solutions to P1 . Readers can refer to

Appendix A for detailed solutions and Feng et al. (2018) for detailed derivation. Go to the next step. 
Step 4 : The planned trajectory of vehicle ω over the following time is generated. 
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4. Formulations of optimization model 

This section presents the optimization model for vehicle arrival times and traffic signal parameters (i.e., phase sequences,

green starts, green durations, and cycle lengths) considering lane-changing behaviors. The objective is vehicle delay mini-

mization. Vehicle trajectory planning is integrated by optimizing vehicle arrival times and lane choices, which determines

vehicle delays. The optimization is conducted based on a planning horizon strategy. Basic assumptions, vehicle trajectory

constraints, signal constraints, and the objective function are introduced sequentially. 

4.1. Assumptions 

The following assumptions are made to formulate the optimization problem: 

a) Vehicles are homogeneous. The desired speed when passing the intersection is only related to its movement direction. 

b) All vehicles are controllable. 

c) Vehicles and the signal controller can communicate information in real time within the control zone. 

d) Vehicles are in permitted lanes when entering the control zone in each arm. The permitted lanes are the dedicated lanes

for a certain vehicle movement. 

e) Lane changing behaviors are assumed to be completed instantly. 

4.2. Vehicle trajectory constraints 

Vehicle trajectory constraints deal with trajectory variables to address the choice of occupied lanes, lane changing behav-

iors, and vehicle arrival times at the intersection. 

4.2.1. Permitted occupied lanes 

Each vehicle in arm i occupies only one lane which is specified by ∑ 

k ∈ K i 
δω 

k = 1 , ∀ ω ∈ �i ; i ∈ I (33) 

The occupied lane must be in the set of permitted lanes for vehicle ω: ∑ 

k ∈ K ω 
δω 

k = 1 , ∀ ω ∈ �i ; i ∈ I (34) 

4.2.2. Possible target lanes 

It is assumed that each vehicle ω in each arm i can only select a lane adjacent to the current one as the target lane if

vehicle ω is contemplating changing lanes: 

min ( k ′ +1 , | K i | ) ∑ 

k = max ( k ′ −1 , 1 ) 

δω 
k = 1 , ∀ ω ∈ �i ; i ∈ I (35) 

where k ′ is the index of the currently occupied lane of vehicle ω at t 0 , and it satisfies: 

δ′ ω 
k ′ = 1 (36) 

Further, vehicle ω is supposed to maintain its current lane if no preceding vehicles exist: 

1 − δω 
k ′ ≤

∑ 

ω ′ ∈ �ω 

I { ω ′ | δ′ ω ′ 
k ′ =1 , x ω 

′ 
0 

< x ω 
0 
} 
(
ω 

′ ), ∀ ω ∈ �i ; i ∈ I (37) 

where I A ( x ) is an indicator function. I A ( x ) = 1, if x ∈ A ; I A ( x ) = 0, otherwise. The right-hand side of Eq. (37) is zero if vehicle

ω has no preceding vehicles. This makes δω 
k ′ = 1 indicating that vehicle ω keeps its currently occupied lane. 

On the other hand, vehicle ω is allowed to move to an adjacent lane k (i.e., δω 
k 

= 1 ) only if the safety distance between

vehicle ω and the vehicles in lane k is guaranteed: 

(
x ω 0 − x ω 

′ 
0 

)
−

( 

d ω + v ω 0 τ
ω + 

( v ω 0 ) 
2 

2 a L 
−

(
v ω ′ 

0 

)2 

2 a L 

) 

≥ −
(
1 − δω 

k 

)
M 

if x ω 
′ 

0 ≤ x ω 0 

(38) 

(
x ω 

′ 
0 − x ω 0 

)
−

( 

d ω 
′ + v ω ′ 0 τ

ω ′ + 

(
v ω ′ 

0 

)2 

2 a L 
− ( v ω 0 ) 

2 

2 a L 

) 

≥ −
(
1 − δω 

k 

)
M 

if x ω 
′ 

0 > x ω 0 

(39) 

∀ ω 

′ ∈ { ω 

′ | δ′ ω ′ 
k 

= 1 , ω 

′ ∈ �i };ω ∈ �i ; i ∈ I , where max ( k ′ − 1, 1) ≤ k ≤ min ( k ′ + 1, | K i |) and k � = k ′ . The safety distance in

Eqs. (38) and (39) is calculated so that a collision can be avoided when both vehicles decelerate with the maximum decel-

eration rate. 
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4.2.3. Lane changing behaviors 

The lane changing decision variable μω of vehicle ω is constrained by 

−M ( 1 − μω ) ≤ δ′ ω 
k − δω 

k ≤ M ( 1 − μω ) , ∀ k ∈ K ω ;ω ∈ �i ; i ∈ I (40)

μω ≥ M 

(
δ′ ω 

k + δω 
k − 2 

)
+ 1 , ∀ k ∈ K ω ;ω ∈ �i ; i ∈ I (41)

When vehicle ω changes lanes, there must be a lane k that satisfies δ′ ω 
k 

� = δω 
k 

, which means that μω = 0 by Eq. (40) . On the

other hand, when vehicle ω maintains its original lane k (i.e., ∃ k ∈ K ω that satisfies δ′ ω 
k 

= δω 
k 

= 1 ), then μω = 1 by Eq. (41) .

Further, the minimum time interval between two lane changing behaviors is set for safety concerns: 

t 0 − t ω l − �t min 
l ≥ −M μω , ∀ ω ∈ �i ; i ∈ I (42)

If t 0 − t ω 
l 

≥ �t min 
l 

, μω can be either one (i.e., no lane changing) or zero (i.e., lane changing). Otherwise, μω can only be one.

4.2.4. Gap acceptance conditions for lane changing 

A vehicle can move into a lane only when the spacing between this vehicle and those vehicles in the target lane is

sufficient. That is, after performing lane changing, the spacing between the current vehicle and its preceding and following

vehicles in the target lane should both be sufficient, even if the vehicle in the target lane is decelerating ( Yeo et al., 2008 ):

x ω 0 − x ω 
′ 
( t 0 − τω ) ≥ d ω − M ηω ,ω ′ − M μω , ∀ ω 

′ ∈ �ω ;ω ∈ �i ; i ∈ I (43)

x ω 0 − x ω 
′ 
( t 0 − τω ) ≥ d ω − M ηω ,ω ′ − M μω ′ , ∀ ω 

′ ∈ �ω ;ω ∈ �i ; i ∈ I (44)

x ω 0 − x ω 
′ 

0 ≥ d ω + v ω 0 τ
ω + 

(
v ω 0 

)2 

2 a L 
−

(
v ω ′ 0 

)2 

2 a L 
− M ηω ,ω ′ − M μω 

∀ ω 

′ ∈ �ω ;ω ∈ �i ; i ∈ I 

(45)

x ω 0 − x ω 
′ 

0 ≥ d ω + v ω 0 τ
ω + 

(
v ω 0 

)2 

2 a L 
−

(
v ω ′ 0 

)2 

2 a L 
− M ηω ,ω ′ − M μω ′ 

∀ ω 

′ ∈ �ω ;ω ∈ �i ; i ∈ I 

(46)

x ω 
′ 
( t 0 − τω ) is used in Eqs. (43) and (44) for consistence with Eq. (29) in the car-following model. Eqs. (43) –(46) are effective

when vehicles ω and ω 

′ are to be in the same lane (i.e., ηω , ω ′ = 0) after either one changes lanes (i.e., μω = 0 or μω ′ = 0).

ηω , ω ′ is constrained by the following Eqs. (47) and (48) : 

δω ′ 
k − ηω ,ω ′ ≤ δω 

k ≤ δω ′ 
k + ηω ,ω ′ , ∀ k ∈ K ω ∩ K ω ′ ;ω 

′ ∈ �ω ;ω ∈ �i ; i ∈ I (47)

ηω ,ω ′ ≤ 2 − δω 
k − δω ′ 

k , ∀ k ∈ K ω ∩ K ω ′ ;ω 

′ ∈ �ω ;ω ∈ �i ; i ∈ I (48)

When vehicles ω and ω 

′ are in the same lane ( ηω , ω ′ = 0), Eq. (47) guarantees that δω ′ 
k 

= δω 
k 

, ∀ k ∈ K ω ∩ K ω ′ . On the other

hand, if there is a lane k satisfying δω 
k 

= δω ′ 
k 

= 1 , Eq. (48) guarantees that ηω , ω ′ = 0. Therefore, Eqs. (47) and (48) make

ηω , ω ′ = 0 equivalent to δω ′ 
k 

= δω 
k 

, ∀ k ∈ K ω ∩ K ω ′ . 

4.2.5. Lower and upper bounds of vehicle arrival times 

Section 3 builds the relationship between vehicle trajectories and vehicle arrival times at a stop bar for platoon leading

vehicles and following vehicles in the same lane. To make the optimal control models feasible, upper and lower bounds of

vehicle arrival times are given. Note that a platoon leading vehicle may become a following vehicle over time and vice versa.

Instead of setting different travel time bounds for leading and following vehicles respectively, we formulate the bounds that

apply to all vehicles. 

The lower bound is 

t ω 
f 

≥ t 0 + �t ω L − M λω , if 
( v max ) 

2 −
(
v ω 0 

)2 

2 a U 
+ 

( v max ) 
2 −

(
v ω 

f 

)2 

2 a L 
> x ω 0 

∀ ω ∈ �i − �p 
i 
; i ∈ I 

(49)

t ω 
f 

≥ t 0 + �t ′ ω L − M λω , if 
( v max ) 

2 −
(
v ω 0 

)2 

2 a U 
+ 

( v max ) 
2 −

(
v ω 

f 

)2 

2 a L 
≤ x ω 0 

∀ ω ∈ �i − �p 
i 
; i ∈ I 

(50)

where �t ω 
L 

and �t ′ ω 
L 

are calculated in Eqs. (10) and (15) , respectively. Eqs. (49) and (50) indicate that the constraints of

minimum arrival time hold for both platoon leading vehicles and following vehicles. The lower bounds are calculated based



100 C. Yu et al. / Transportation Research Part B 112 (2018) 89–112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on the optimal control models with allowable acceleration rates. Newell’s linear car-following model is, however, used to

capture the trajectories of following vehicles. To take the inconsistence into consideration, λω is used in Eqs. (49) and (50) .

λω = 1 if vehicle ω keeps its previously optimized trajectory. Then Eqs. (49) and (50) are inactive. 

Additionally, vehicle ω cannot overtake its preceding vehicle in the same lane no matter it is a platoon leading vehicle

or a following vehicle: 

t ω f ≥ t ω 
′ 

f + h 

ω − M ηω ,ω ′ , ∀ ω 

′ ∈ �ω ;ω ∈ �i − �p 
i 
; i ∈ I (51)

The safety constraint Eq. (51) is borrowed from the car-following model Eq. (32) . Eq. (51) is effective only when vehicles

ω and ω 

′ are to pass through the intersection in the same lane (i.e., ηω , ω ′ = 0). 

The upper bound of arrival time is: 

t ω f ≤ t 0 + �t ω U + M γ ω , ∀ ω ∈ �i − �p 
i 
; i ∈ I (52) 

where �t ω 
U 

is calculated in Eq. (11) . Similar with λω in Eqs. (49) and (50) , γ ω is used in Eq. (52) . γ ω = 0 if the trajectory

of vehicle ω is not affected by all of the preceding vehicles and the trajectory is going to be updated. λω and γ ω are

constrained as ∑ 

ω ′ ∈ �ω 

(
1 − ηω ,ω ′ − ρω ,ω ′ ) + M λω ≥ γ ω , ∀ ω ∈ �i − �p 

i 
; i ∈ I (53) 

t ω f − t ω 
′ 

f − h 

ω ≤ M ηω ,ω ′ + M ρω ,ω ′ , ∀ ω 

′ ∈ �ω , ω ∈ �i − �p 
i 
; i ∈ I (54)

ρω ,ω ′ ≤ 1 − ηω ,ω ′ , ∀ ω 

′ ∈ �ω , ω ∈ �i − �p 
i 
; i ∈ I (55) 

−M ( 1 − λω ) ≤ t ω f − t ′ ω f ≤ M ( 1 − λω ) , ∀ ω ∈ �i − �p 
i 
; i ∈ I (56) 

where ρω , ω ′ is an introduced binary variable. Eqs. (54) and (55) ensure that ρω , ω ′ = 1 when the trajectory of vehicle ω is not

affected by its preceding vehicle ω 

′ (i.e., ηω , ω ′ = 0 and t ω 
f 

> t ω 
′ 

f 
+ h ω ). Eqs. (53) and (56) indicate that the upper bound con-

straint (52) is only effective ( γ ω = 0) if vehicle ω is not affected by all the preceding vehicles ( 
∑ 

ω ′ ∈ �ω 
( 1 − ηω ,ω ′ − ρω ,ω ′ ) =

0 ) and its trajectory is going to be updated ( λω = 0). 

4.2.6. No-changing zones 

Vehicles in no-changing zones keep their previously optimized trajectories. That is, the trajectories of these vehicles will

not be updated with varying traffic condition. The benefits of doing so are to reduce computational burden but at the cost

of optimality. The constraints are specified by 

δω 
k = δ′ ω 

k , ∀ k ∈ K i ;ω ∈ �p 
i 
; i ∈ I (57) 

t ω f = t ′ ω f , ∀ ω ∈ �p 
i 
; i ∈ I (58) 

Eqs. (57) and (58) guarantee no lateral (i.e., lane-changing behaviors) and longitudinal trajectory (i.e., arrival time at stop

bars) changes, respectively. According to the trajectory generation procedure in Section 3.3 , maintaining the previously op-

timized arrival time is equal to maintaining the previously planned trajectories. 

4.3. Signal constraints 

Signal constraints deal with signal parameters in an optimization horizon. Vehicle trajectory planning is integrated into

signal optimization with the aid of vehicle arrival times and lane choices. Phase sequences, green start and duration of each

phase, and cycle lengths are optimized. 

4.3.1. Lane signal settings 

If the traffic flow from arm i to arm j is permitted in several lanes ( ζ i, j 

k 
= 1 ), then vehicles in these lanes must receive

identical signal indication: 

−M 

(
1 − ζ i, j 

k 

)
≤ �n 

i,k 
− θn 

i, j 
≤ M 

(
1 − ζ i, j 

k 

)
∀ n = 1 , . . . , N; k ∈ K i ; ( i, j ) ∈ �; i ∈ I 

(59) 

−M 

(
1 − ζ i, j 

k 

)
≤ �n 

i,k 
− φn 

i, j 
≤ M 

(
1 − ζ i, j 

k 

)
∀ n = 1 , . . . , N; k ∈ K i ; ( i, j ) ∈ �; i ∈ I 

(60) 

where θn 
i, j 

and φn 
i, j 

are the green start and green duration for traffic flow ( i, j ) in the n th cycle; �n 
i,k 

and �n 
i,k 

are the green

start and green duration in lane k of arm i in the n th cycle. These constraints ensure that �n 
i,k 

= θn 
i, j 

and �n 
i,k 

= φn 
i, j 

, i.e.,

identical signal settings for all permitted lanes k . 
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4.3.2. Green start time 

Since phase sequences are not determined in advance, the green start time of each phase in every cycle is confined in

one cycle length: 

t s + 

n −1 ∑ 

n ′ =1 

C n 
′ ≤ θn 

i, j ≤ t s + 

n ∑ 

n ′ =1 

C n 
′ 
, ∀ ( i, j ) ∈ �; n = 1 , . . . , N (61)

However, the green start time is known if the phase was already started or terminated before time t 0 in the first cycle

as shown in Eqs. (62) and (63) , respectively: 

θn 
i, j = θ0 

i, j , ∀ n = 1 ; ( i, j ) ∈ �0 (62)

θn 
i, j = θ p 

i, j 
, ∀ n = 1 ; ( i, j ) ∈ �p (63)

The green start times for the phases that will receive green after time t 0 in the first cycle are constrained in Eq. (64) : 

θn 
i, j ≥ t 0 , ∀ n = 1 ; ( i, j ) ∈ � − �0 − �p (64)

4.3.3. Duration of green 

For safety concerns, a minimum value of green duration is set in Eq. (65) : 

g i, j 
min 

≤ φn 
i, j ≤ C n , ∀ ( i, j ) ∈ �; n = 1 , . . . , N (65)

The green durations for the phases whose greens were terminated before time t 0 in the first cycle are fixed: 

φn 
i, j = φp 

i, j 
, ∀ n = 1 ; ( i, j ) ∈ �p (66)

The green durations for the phases that are green at time t 0 in the first cycle are constrained: 

φn 
i, j ≥ t 0 − θn 

i, j , ∀ n = 1 ; ( i, j ) ∈ �0 (67)

4.3.4. Green end time 

The proposed control strategies are able to generate compact vehicle platoons. At most one platoon can pass through the

intersection in one lane during one cycle. The green start and end times for each phase should be in the same cycle: 

t s + 

n −1 ∑ 

n ′ =1 

C n 
′ ≤ θn 

i, j + φn 
i, j ≤ t s + 

n ∑ 

n ′ =1 

C n 
′ 
, ∀ ( i, j ) ∈ �; n = 1 , . . . , N (68)

4.3.5. Cycle length 

Consider the start time t s of the optimization horizon and the current time t 0 , the cycle length of the first cycle is

constrained in Eq. (69) : 

C n ≥ t 0 − t s , n = 1 (69)

4.3.6. Phase sequence 

Traffic flows ( i, j ) and ( l, m ) are incompatible if they cannot have right of way at the same time. The phase sequence that

avoids incompatible traffic flows in each cycle are constrained as: 

�n 
i, j,l,m 

+ �n 
l,m,i, j = 1 , ∀ ( ( i, j ) , ( l, m ) ) ∈ �ic ; n = 1 , . . . , N (70)

4.3.7. Clearance time 

For a pair of incompatible traffic flows, the following constraints are specified to ensure the clearance time: 

θn 
i, j 

+ φn 
i, j 

+ πi, j,l,m 

≤ θn 
l,m 

+ M 

(
1 − �n 

i, j,l,m 

)
∀ ( ( i, j ) , ( l, m ) ) ∈ �ic ; n = 1 , . . . , N 

(71)

θn 
l,m 

+ φn 
l,m 

+ πl,m,i, j ≤ θn 
i, j 

+ M 

(
1 − �n 

l,m,i, j 

)
∀ ( ( i, j ) , ( l, m ) ) ∈ �ic ; n = 1 , . . . , N 

(72)

If traffic flow ( l, m ) follows ( i, j ) in the n th cycle, i.e., �n 
i, j,l,m 

= 1 , constraint Eq. (71) is effective. Otherwise, constraint

Eq. (72) is effective. 

Moreover, the clearance time between the traffic flows in subsequent cycles should also be guaranteed: 

θn 
i, j + φn 

i, j + πi, j,l,m 

≤ θn +1 
l,m 

, ∀ ( i, j ) ∈ �; ( l, m ) ∈ �; n = 1 , . . . , N − 1 (73)

Similarly, the clearance time between the first traffic flow in the first cycle and the last traffic flow in the N 

th cycle should

also be guaranteed: 

θN 
i, j + φN 

i, j + πi, j,l,m 

≤ θ1 
l,m 

+ 

N ∑ 

C n , ∀ ( i, j ) ∈ �; ( l, m ) ∈ � (74)

n =1 
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4.3.8. Vehicle arrival times at stop bars 

Due to vehicle trajectory planning, vehicles in the same lane are turned into compacted platoons to pass through the

intersection within green intervals [ �n 
i,k 

, �n 
i,k 

+ �n 
i,k 

]. Queues at stop bars are avoided for full utilization of intersection ca-

pacity. A binary variable βω 
n is defined to distribute vehicles to different cycles. Let βω 

n = 1 if vehicle ω is supposed to pass

through the intersection in the n th cycle; and βω 
n = 0 , if in other cycles. The constraints of arrival time t ω 

f 
are expressed as

�n 
i,k 

− M 

(
1 − δω 

k 

)
− M ( 1 − βω 

n ) ≤ t ω 
f 

≤ �n 
i,k 

+ �n 
i,k 

+ M 

(
1 − δω 

k 

)
+ M ( 1 − βω 

n ) 

∀ n = 1 , . . . , N; k ∈ K ω ;ω ∈ �i ; i ∈ I 

(75) 

Eq. (75) is effective when vehicle ω is supposed to pass the stop bar in lane k ( δω 
k 

= 1 ) in the n th cycle ( βω 
n = 1 ). Further,

vehicle ω can choose only one of the N cycles in the signal optimization horizon: 

N ∑ 

n =1 

βω 
n = 1 , ∀ ω ∈ �i ; i ∈ I (76) 

4.3.9. Other signal constraints 

In practice, there may be some constraints on the relative timing of green starts and ends for different traffic flows.

Define z n,s 
i, j,l,m 

and z n,e 
i, j,l,m 

as the relative time for green starts and ends measured from traffic flow ( i, j ) to ( l, m ) in each cycle,

respectively. The constraints are specified as 

θn 
i, j + z n,s 

i, j,l,m 

= θn 
l,m 

, ∀ ( i, j ) ∈ �; ( l, m ) ∈ �; n = 1 , . . . , N (77)

θn 
i, j + φn 

i, j + z n, e 
i, j,l,m 

= θn 
l,m 

+ φn 
l,m 

, ∀ ( i, j ) ∈ �; ( l, m ) ∈ �; n = 1 , . . . , N (78)

These constraints are mainly used to make sure that two signal groups start or end simultaneously (i.e., z n,s 
i, j,l,m 

= 0 or

z n,e 
i, j,l,m 

= 0 ) for practical considerations. 

4.4. Optimization models 

The primary objective of the proposed optimization model is the minimization of vehicle travel delays. The travel delay

of each vehicle is defined as the difference between the actual travel time and the free flow travel time. It is noticed that

there may be multiple solutions that have the same total vehicle delay but with different cycle lengths. Since we have no

constraints of maximum cycle lengths or maximum phase green times to make the model more flexible, a secondary objec-

tive of cycle length minimization is added. It increases the frequency of switching right of way and potentially decreases the

delays of the incoming vehicles in the future. The proposed model is a hierarchical multi-objective optimization model. Total

vehicle delay is first minimized and then cycle lengths are minimized for the solutions with the same minimum delay. The

most common approach to such a model is the weighted sum method ( Marler and Arora, 2004 ). As a result, the objective

function is formulated as 

P3: 

min 

V = ( ̄T , S ) 
α1 

∑ 

i ∈ I 

∑ 

ω∈ �i 

(
t ω f − t ω e − L i 

v max 

)
+ α2 

N ∑ 

n =1 

C n (79) 

where T̄ is a subset of the trajectory variable set T in Table 2 (i.e., T̄ = T − { x ω (t) , l ω (t) , v ω (t) , a ω (t) } ); α1 and α2 are

weighting parameters and α1 � α2 > 0. The constraints are Eqs. (33) –(78) . t ω 
f 

− t ω e is the actual travel time of vehicle ω.

Note that t ω 
f 

− t ω e also includes the waiting time before entering the control zone when there is a queue at the boundary

of a control zone. L i / v max is the free flow travel time. The objection function and all constraints are linear. Therefore, the

optimization model ( P3 ) is an MILP problem that can be solved by many existing algorithms or commercial solvers. 

In the MILP model, the number of effective binary variables is 
∑ 

i ∈ I 
∑ 

ω∈ �i −�p 
i 
( | K i | + | �ω | + N + 3 ) . The number of

effective continuous variables is 
∑ 

i ∈ I ( | �i − �p 
i 
| + 2 N| K i | ) + N( 2 | �| + | �ic | + 1 ) . The number of effective trajectory con-

straints is bounded by 
∑ 

i ∈ I 
∑ 

ω∈ �i −�p 
i 
( 10 + | �i | + 2 | K ω | + ( 7 + | K i | ) | �ω | ) . And the number of effective signal constraints is∑ 

i ∈ I ( 2 N| �|| K i | ) + 

∑ 

i ∈ I 
∑ 

ω∈ �i 
( 1 + N| K ω | ) + ( 3 N + 1 ) | �| + | �0 | + | �p | + ( 3 N − 1 ) | �ic | + 3 N | �| 2 . The complexity of the MILP

model mainly depends on the vehicle number in the control zone. The numbers of binary and continuous variables exhibit

quadratic and linear growth with respect to the vehicle number | �i | in each arm in the worst cases, respectively. The con-

straint number shows quadratic growth with respect to | � | in the worst cases as well. 
i 
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Fig. 5. Illustration of planning horizon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Impacts of weighting parameters on solution quality 

Generally, P3 is not equivalent to the original hierarchical multi-objective optimization model. Intuitively, cycle length

minimization in P3 urges vehicles to pass through the intersection within less time and thus leads to less delay. However,

in theory, P3 may produce a solution with worse quality in terms of total vehicle delay. Denote d 1 and C n 
1 

as the minimum

total vehicle delay and the length of the n th cycle given by the original hierarchical multi-objective optimization model.

Denote d 2 and C n 
2 

as the total vehicle delay and the cycle length of any solution given by P3 . We have 

α1 d 1 + α2 

N ∑ 

n =1 

C n 1 = α1 d 2 + α2 

N ∑ 

n =1 

C n 2 (80)

where d 2 ≥ d 1 and 

∑ N 
n =1 C 

n 
2 

≤ ∑ N 
n =1 C 

n 
1 

. Then we get 

α1 ( d 2 − d 1 ) = α2 

( 

N ∑ 

n =1 

C n 1 −
N ∑ 

n =1 

C n 2 

) 

(81)

If d 2 = d 1 and 

∑ N 
n =1 C 

n 
1 

= 

∑ N 
n =1 C 

n 
2 

, then the solution to P3 is also the solutions to the original model. Otherwise, we have 

d 2 − d 1 = 

α2 

α1 

( 

N ∑ 

n =1 

C n 1 −
N ∑ 

n =1 

C n 2 

) 

≤ �d (82)

where �d is the tolerance of solution quality degradation. To guarantee Eq. (82) , α1 / α2 is expected to satisfy the following

Eq. (83) in a conservative way: 

α1 

α2 

≥
∑ N 

n =1 C 
n 
1 

�d 
(83)

Although 

∑ N 
n =1 C 

n 
1 

is unknown, its upper bound can be easily estimated by solving a special case of P3 with α1 = 1 and

α2 = 0, i.e., only minimizing total vehicle delay. The resultant signals are divided into two parts by the passing time of the

last vehicle. The 2nd part, i.e., the signals after the passing time of the last vehicle, may be unrealistic because of too large

cycle lengths. But it has no impacts on vehicle delays. The length of this part can then be recalculated based on minimum

green durations. The upper bound is the total length of the 1st part and the 2nd part and is used to replace 
∑ N 

n =1 C 
n 
1 

in

Eq. (83) as the guide to the selection of α1 and α2 in each optimization. 

4.6. Planning horizon procedure 

Previous studies use time (in seconds) as the length of the planning horizon with a fixed number of cycles ( Feng et al.,

2015 ), which is different in this study. The cycle number N in the planning horizon, as shown in Fig. 5 , depends on the

number of vehicles considered in the optimization. Note that cycle lengths are optimized over time and, therefore, the

total time of the planning horizon may vary over time as well. Based on the constraints in Section 4.3.8 , N needs to be

large enough so that all vehicles are planned to pass through the intersection in the N cycles. A smaller N may render the

optimization model infeasible while a larger N increases computational burden. As a result, we choose the smallest N that

makes the model feasible. Note that the choice of N has no impacts on solution optimality under the condition that the

MILP model is feasible. The planning horizon procedure is shown in Fig. 6 , which follows: 

Step 1: Initialize horizon start time t s = 0 and cycle number N = 1 at initial time t 0 = 0. 

Step 2: Collect information of vehicles in the control zone at time t 0 . 

Step 3: Solve the special case of the MILP model P3 with α1 = 1 and α2 = 0. 

Step 4: If the model is infeasible, then update the cycle number N = N + 1 and go to Step 3 . Otherwise, go to the next

step. 

Step 5: Select α1 and α2 as explained in Section 4.5 so that α1 / α2 is large enough. 

Step 6: Solve the MILP model P3 . 
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Fig. 6. Planning horizon procedure. 

Table 3 

Basic traffic demand and volume/capacity ratios. 

Traffic demand in pcu/h ( v / c ) To Arm 

From Arm 1 2 3 4 

1 – 200 (0.38) 400 (0.35) 100 (0.21) 

2 150 (0.32) – 150 (0.29) 200 (0.35) 

3 380 (0.33) 150 (0.32) – 180 (0.35) 

4 100 (0.19) 200 (0.35) 100 (0.21) –

 

 

 

 

 

 

 

 

 

Step 7: Update the signals and the planned vehicle trajectories in the control zone according to the optimization results.

Step 8: Record the optimized length C 1 of the first cycle. 

Step 9: Update time t 0 = t 0 + �t , where �t is the time step. 

Step 10: If t 0 reaches the final simulation time, then end the process. Otherwise, go to the next step. 

Step 11: If t 0 ≥ t s + C 1 , then update t s = t s + C 1 . Go to Step 2 . 

5. Numerical examples 

5.1. Experimental data 

To evaluate the proposed models, a typical four-arm intersection with all directions of movements is applied. The lane

markings of the intersection are shown in Fig. 7 . Right-turning vehicles are not controlled by traffic signals but they are

controlled to arrive at the intersection at a desired speed. The length L i of the control zone in each arm is 300 m which is

the reliable communication range of Dedicated Short-Range Communications (DSRC) ( Emmelmann et al., 2010 ). The length

L 
p 
i 

of the no-changing zone in each arm is 50 m. 

The basic traffic demand and the volume/capacity ( v / c ) ratios are shown in Table 3 . The v / c ratios are calculated with the

assumed green duration of 26 s for each phase and a cycle length of 120 s. The saturation flow in each lane is determined

by the time headway in Eq. (31) . Vehicles are generated according to Poisson distribution, which is a common practice for

traffic control at isolated intersections ( Jiang et al., 2017; Li et al., 2014 ). Speed limit v max is 15 m/s. The desired speeds v ω 
f 

of
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Fig. 7. Lane markings of a four-arm intersection. 

Table 4 

Throughput. 

Demand factor Throughput (veh) 

Actuated Control CAV-based Control Increase (%) 

0.6 289.60 291.20 0.55 

1.0 446.00 449.20 0.72 

2.0 686.00 691.50 0.80 

3.0 764.60 824.80 7.87 

4.0 769.70 922.10 19.80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

left-turning, though, and right-turning vehicles passing through the intersection are 10 m/s, 13 m/s, and 8 m/s, respectively.

Vehicles enter the control zone at the speed of 13 m/s instead of the speed limit in order to test more cases in the trajec-

tory generation in Appendix A . The time displacement τω and space displacement d ω in the car-following model are 0.9 s

(assuming quick reaction of CAVs) and 6 m. The minimum time interval between two lane changing behaviors of a vehicle is

5 s. The absolute values of the maximum comfortable acceleration and deceleration rates ( a U and a L ) are 2 m/s 2 and 4 m/s 2 .
The clearance time π i,j, l, m 

between incompatible traffic flows (e.g., the traffic flow from arm 1 to arm 2 and the traffic

flow from arm 2 to arm 3) is 4 s. The minimum green time g 
i, j 
min 

is 6 s. The tolerance �d of solution quality degradation is

3 s. The weighting parameters α1 and α2 in the objective function Eq. (79) are 300 and 1, which satisfy Eq. (83) in each

optimization. To investigate the environmental impacts, the CO 2 emission model in Frey et al., (2002) is employed. 

The optimization models are written in C# and solved using Gurobi 7.5.1 ( Gurobi Optimization Inc., 2017 ). All the exper-

iments are performed in a desktop computer with an Intel 3.6 GHz CPU and 16 GB memory. An upper limit of 1.5 s is set for

real-time application. A sub-optimal solution produced by the solver will be accepted if the solving time exceeds the time

limit. 

5.2. Results and discussions 

Vehicle-actuated control is applied in the simulation as the benchmark for comparison with the proposed control

method, denoted as CAV-based control. In actuated control, the maximum green durations for arm 1 and arm 3 are 30 s,

and the maximum green duration for arm 2 and arm 4 are 20 s. The minimum green duration is 4 s which is the optimal

value by trial and error. The unit extension time is 2 s. The time of each simulation scenario is 1200 s and the simulation

time step is 1 s. Average values of throughput, vehicle delays, and CO 2 emissions of ten different random seeds are recorded

and shown in Tables 4–6 . Five levels of traffic demand are tested, which are the product of the basic demand and a de-

mand factor. The demand with the factors from 0.6 to 2.0 is under-saturated and the demand with factors 3.0 and 4.0 are

over-saturated. The under-saturated and over-saturated traffic condition is observed with actuated control. 

Table 4 shows that CAV-based control improves intersection capacity. The throughput increase under CAV-based con-

trol is insignificant with under-saturated traffic demand. This is consistent with our intuition because demand is below

intersection capacity under both control methods. When the demand factor further increases to 3.0 and 4.0, intersection

capacity is reached under actuated control because the throughput almost remains the same. In contrast, the throughput
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Table 5 

Average delay. 

Demand factor Average Delay (s/veh) 

Actuated Control CAV-based Control Decrease (%) 

0.6 14.65 8.62 41.16 

1.0 15.84 11.33 28.47 

2.0 18.32 13.59 25.82 

3.0 61.71 15.40 75.04 

4.0 98.28 16.34 83.37 

Table 6 

Average CO 2 emissions. 

Demand factor Average CO 2 Emissions (g/veh) 

Actuated Control CAV-based Control Decrease (%) 

0.6 123.96 114.73 7.45 

1.0 126.19 123.51 2.12 

2.0 134.98 132.38 1.93 

3.0 212.65 133.08 37.42 

4.0 267.07 135.39 49.31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

under CAV-based control keeps increasing noticeably. This indicates that intersection capacity under CAV-based control is

higher compared with actuated control. 

Table 5 shows the significant decrease of vehicle delays when CAV-based control is applied, which can reach ∼40% under

low traffic demand and ∼80% under high demand. The benefits are mainly due to improved intersection capacity as well as

the more efficient use of green time at the intersection. Vehicle trajectories are optimized so that all vehicles pass through

the intersection at high desired speeds without stops. Thus, no vehicle queues are generated at stop bars, either. As a

result, the green start-up lost time is eliminated and more vehicles can pass the intersection during the same green interval

compared with actuated control. One interesting observation is that the delay reduction under CAV-based control decreases

first and then rises as demand increases. Under under-saturated demand, the benefits are more remarkable with lower

demand which indicates strong flow uncertainty. Under over-saturated demand, the delay under actuated control rises more

significantly as demand increases. Because the intersection capacity under CAV-based control is much higher than that under

actuated control. 

Table 6 shows the comparison of CO 2 emissions. The results are similar to those in Table 5 . CAV-based control outper-

forms actuated control under both under- and over-saturated demand. This is intuitive because the trajectories of platoon

leading vehicles are planned with the aim of reducing fuel consumption/emission. Following vehicles also have smoother

trajectories since they do not make complete stops at stop bars. But the benefits decrease with increasing traffic volumes

with under-saturated demand. The reason is that vehicles are likely to accelerate or decelerate more frequently under CAV-

based control when traffic condition varies. As shown in Fig. 8 , vehicles decelerate only once before arriving at the in-

tersection under actuated control while vehicles keep adjusting their speeds according to varying traffic condition under

CAV-based control. However, the benefits are significant under over-saturated demand. Because intersection capacity is im-

proved under CAV-based control and thus vehicles experience much less delays. This indicates that vehicles spend much

less time traversing the intersection. In this way, CO 2 emissions are greatly reduced. 

5.3. Sensitivity analysis 

5.3.1. Minimum green time 

Minimum green time is designed to guarantee safety. It may be reduced when every vehicle is controllable and the

pedestrian flow can be ignored (e.g., intersections with overpasses for pedestrians). In that case, the proposed model is

likely to bring more benefits. To this end, a sensitivity analysis of minimum green time is performed to explore the poten-

tial benefits. The experiments show that a smaller minimum green duration results in significantly smaller vehicle delays

and lower CO 2 emissions under CAV-based control, as shown in Fig. 9 . When the minimum green time decreases from 6 s

to 1 s, the CO 2 emissions and average vehicle delay under CAV-based control both decrease notably compared with actuated

control. For example, the decreases of CO 2 emissions and vehicle delays reach ∼16% and ∼70%, respectively, when the mini-

mum green duration is 1 s. This is reasonable because a smaller minimum green duration helps avoid green waste time due

to flow fluctuations, especially under low demand. A small green duration can be used for efficiency, similar with the con-

sideration of skipping a phase in some signalization approaches. In current practice, the minimum green duration is usually

set to at least 5 seconds. However, it can be reduced to a smaller value under CAV-based control since no driver reaction

time and human errors need to be considered. 
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Fig. 8. Trajectories of left-turning vehicles in arm 1 as an example: (a) actuated control, and (b) CAV-based control. 
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Fig. 9. Decrease of CO 2 emissions and vehicle delays with decreasing minimum green under CAV-based control compared with actuated control. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

5.3.2. Length of no-changing zones 

The purpose of setting no-changing zones is to reduce computational burden at the cost of optimality. Vehicles within

no-changing zones keep their previously planned trajectories. Thus, the number of vehicles considered in the proposed MILP

model is reduced. Fig. 10 shows the impacts of the length of no-changing zones on the performance of CAV-based control.

Four demand levels from low to high are tested with the demand factors from 1.0 to 4.0. Fig. 10 (a) shows that the length of

no-changing zones has no significant impacts on the throughput at all demand levels. This is because the demand has not

reached the intersection capacity, as discussed in Section 5.2 . Fig. 10 (b) shows that vehicle delays increase with increasing

length of no-changing zones. The delay increase is more significant with a longer length of no-changing zones under high

demand (demand factors 3 and 4). Fig. 10 (c) shows similar results to Fig. 10 (b) but in terms of CO 2 emissions. Therefore,

the setting of no-changing zones does not have much negative impact on the performance of the model if traffic demand is

not high and the zone length is not too long. 
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Fig. 10. Impacts of the length of no-changing zones: (a) throughput, (b) vehicle delays, and (c) CO 2 emissions. 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions and recommendations 

This research develops an MILP model that optimizes vehicle trajectories and traffic signals in a unified framework at

isolated urban intersections with multiple phases and all directions of vehicle movements. Phase sequences, green start and

duration of each phase, and cycle lengths are optimized together with vehicle lane-changing behaviors and arrival times for

vehicle delay minimization. Vehicle trajectory planning is integrated into signal optimization via the lane choice and the

arrival time of each vehicle at stop bars. A planning horizon strategy is applied to conduct the optimization. Vehicles are

grouped into platoons and are guaranteed to pass through the intersection at desired speeds to avoid stops at stop bars. The

trajectories of vehicles in each lane are planned based on optimized vehicle arrival times. Simulation results show that the

proposed CAV-based control outperforms vehicle-actuated control in terms of intersection capacity, vehicle delay, and CO 2 

emissions. A sensitivity analysis is conducted to show the potential benefits of a small minimum green duration as well as

the impacts of no-changing zones on the optimality of the proposed control. 

It is assumed that all vehicles are controllable which may restrict the implementation of the proposed model. To relax

this assumption for lower market penetration of CAVs, more constraints including the choice of platoon leading vehicles

and the consideration of queues at stop bars are necessary. A car-following model is used to capture following vehicle

trajectories, which provides the potential for extending the current work to mixed traffic condition. The proposed model lays
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the foundation for implementing more complicated and realistic traffic conditions, where the un-controllable vehicles can

be described by the car-following model. For simplicity, homogeneous vehicles are assumed and vehicles in the same lane

have same desired speed upon arriving at the intersection. It is interesting to extend the model to heterogeneous vehicles,

for example, in the case with shared lanes. For real-world implementation, the uncertainties in vehicle driving behaviors

and traffic environment cannot be ignored. Furthermore, we plan to expand this model to optimize vehicle trajectories and

signal timings at a network level. The combination of the proposed model and the reservation-based models is also worth

investigating. 
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Appendix A. Trajectory generation for leading vehicles 

Given the optimized arrival time t ω 
f 

of vehicle ω and the current time t 0 (or the optimized travel time �t ω = t ω 
f 

− t 0 ),

the optimal trajectory of ω is identified by solving P1 . The solutions are among six scenarios. Please refer to Feng et al.

(2018) for detailed derivation. 

Scenario 1: �t ω = �t ω 
L 

As shown in constraint Eq. (12) , the minimum travel time of vehicle ω is �t ω 
L 

that is calculated in Eq. (10) . This scenario

only happens in Case 1 in Section 3.1 . When �t ω = �t ω 
L 

, vehicle ω has to accelerate with a U to speed v ω ( t ω 
1 

) at location

x ω ( t ω 
1 

) at time t ω 
1 

and then it decelerates with − a L until reaching the intersection with speed v ω 
f 

at time t ω 
f 

. t ω 
1 

, x ω ( t ω 
1 

) , and

v ω ( t ω 
1 

) are calculated as 

t ω 1 = t 0 + 

v ω 
f 

− v ω 0 + a L �t ω 

a U + a L 
(84)

v ω ( t ω 1 ) = v ω 0 + a U ( t 
ω 
1 − t 0 ) (85)

x ω ( t ω 1 ) = x ω 0 −
v ω 0 + v ω 

(
t ω 1 

)
2 

( t ω 1 − t 0 ) (86)

The notations are explained in Tables 1 and 2 . Note that only the deceleration segment exists if v ω 
0 

= v ω 
f 

+ a L ( t 
ω 
f 

− t 0 ) . 

Scenario 2: �t ω 
L 

< �t ω < �t ω 
OL 

The travel time �t ω 
OL 

is calculated as 

�t ω OL = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

x ω 0 

v ω 
0 

+ 

(
v ω 0 − v ω 

f 

)2 

2 v ω 
0 

a L 
, if v ω 0 ≥ v ω 

f 

x ω 0 

v ω 
f 

+ 

(
v ω 0 − v ω 

f 

)2 

2 v ω 
f 

a U 
, otherwise 

(87)

In this scenario, vehicle ω accelerates with a U to speed v ω ( t ω 
1 

) at location x ω ( t ω 
1 

) at time t ω 
1 

, maintains this speed until

time t ω 
2 

at location x ω ( t ω 
2 

) , and decelerates with − a L to speed v ω 
f 

at the intersection at time t ω 
f 

. 

Travel time ( t ω 
1 

− t 0 ) is the root of the following equation: 

a L + a U 
2 a L 

a U t 
2 −

(
t ω f − t 0 + 

v ω 
f 

− v ω 0 

a L 

)
a U t 

+ 

( 

x ω 0 + 

(
v ω 0 − v ω 

f 

)2 

2 a L 
−

(
t ω f − t 0 

)
v ω 0 

) 

= 0 (88)

As t ω 
2 

≥ t ω 
1 

, it can be proved that ( t ω 
1 

− t 0 ) takes the smaller root and t ω 
2 

is calculated as 

t ω 2 = t ω f −
v ω 0 + a U 

(
t ω 1 − t 0 

)
− v ω 

f 

a L 
(89)

v ω ( t ω 
1 

) , x ω ( t ω 
1 

) , and x ω ( t ω 
2 

) are calculated as 

v ω ( t ω 1 ) = v ω ( t ω 2 ) = v ω 0 + a U ( t 
ω 
1 − t 0 ) (90)

x ω ( t ω 1 ) = x ω 0 −
v ω 0 + v ω 

(
t ω 1 

)
( t ω 1 − t 0 ) (91)
2 
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x ω ( t ω 2 ) = x ω ( t ω 1 ) − v ω ( t ω 1 ) ( t 
ω 
2 − t ω 1 ) (92) 

Scenario 3: �t ω = �t ω 
OL 

Scenario 3–1: v ω 
0 

≥ v ω 
f 

( �t ω 
OL 

= 

x ω 
0 

v ω 
0 

+ 

( v ω 
0 

−v ω 
f 
) 2 

2 v ω 
0 

a L 
) 

Vehicle ω drives with the initial speed v ω 
0 

until time t ω 
1 

at location x ω ( t ω 
1 

) , and then decelerates with − a L to speed v ω 
f 

at

the intersection at time t ω 
f 

. Note that if v ω 
0 

= v ω 
f 

, only the segment with the constant speed exists. t ω 
1 

, v ω ( t ω 
1 

) , and x ω ( t ω 
1 

)

are calculated as 

t ω 1 = t ω f −
v ω 0 − v ω 

f 

a L 
(93) 

v ω ( t ω 1 ) = v ω 0 (94) 

x ω ( t ω 1 ) = x ω 0 − v ω 0 ( t 
ω 
1 − t 0 ) (95) 

Scenario 3–2: v ω 
0 

< v ω 
f 

( �t ω 
OL 

= 

x ω 
0 

v ω 
f 

+ 

( v ω 
0 

−v ω 
f 
) 2 

2 v ω 
f 

a U 
) 

Vehicle ω first accelerates with a U to speed v ω 
f 

at location x ω ( t ω 
1 

) at time t ω 
1 

, and then drives at the constant speed v ω 
f 

until arriving at the intersection at time t ω 
f 

. t ω 
1 

, v ω ( t ω 
1 

) , and x ω ( t ω 
1 

) are calculated as 

t ω 1 = t 0 + 

v ω 
f 

− v ω 0 

a U 
(96) 

v ω ( t ω 1 ) = v ω f (97) 

x ω ( t ω 1 ) = x ω 0 −
v ω 0 + v ω 

(
t ω 1 

)
2 

( t ω 1 − t 0 ) (98) 

Scenario 4: �t ω 
OL 

< �t ω < �t ω 
OU 

The travel time �t ω 
OU 

is calculated as 

�t ω OU = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

x ω 0 

v ω 
f 

−
(
v ω 0 − v ω 

f 

)2 

2 v ω 
f 

a L 
, if v ω 0 ≥ v ω 

f 

x ω 0 

v ω 
0 

−
(
v ω 0 − v ω 

f 

)2 

2 v ω 
0 

a U 
, otherwise 

(99) 

Scenario 4–1: v ω 
0 

≥ v ω 
f 

( �t ω 
OU 

= 

x ω 
0 

v ω 
f 

− ( v ω 
0 

−v ω 
f 
) 2 

2 v ω 
f 

a L 
) 

In this scenario, vehicle ω decelerates with − a L to speed v ω ( t ω 
1 

) at location x ω ( t ω 
1 

) at time t ω 
1 

, maintains the constant

speed v ω ( t ω 
1 

) until time t ω 
2 

at location x ω ( t ω 
2 

) , and decelerates again to speed v ω 
f 

upon arriving at the intersection at time

t ω 
f 

. Note that if v ω 
0 

= v ω 
f 

, only the segment with the constant speed exists. t ω 
1 

, v ω ( t ω 
1 

) , x ω ( t ω 
1 

) , t ω 
2 

, v ω ( t ω 
2 

) , and x ω ( t ω 
2 

) are

calculated as 

v ω ( t ω 1 ) = v ω ( t ω 2 ) = 

2 a L x 
ω 
0 −

(
v ω 0 

)2 + 

(
v ω 

f 

)2 

2 

(
a L 

(
t ω 

f 
− t 0 

)
− v ω 

0 
+ v ω 

f 

) (100) 

t ω 1 = t 0 + 

v ω 0 − v ω 
(
t ω 1 

)
a L 

(101) 

t ω 2 = t ω f −
v ω 

(
t ω 1 

)
− v ω 

f 

a L 
(102) 

x ω ( t ω 1 ) = x ω 0 −
v ω 0 + v ω 

(
t ω 1 

)
2 

( t ω 1 − t 0 ) (103) 

x ω ( t ω 2 ) = x ω ( t ω 1 ) − v ω ( t ω 1 ) ( t 
ω 
2 − t ω 1 ) (104) 

Scenario 4–2: v ω 
0 

< v ω 
f 

( �t ω 
OU 

= 

x ω 
0 

v ω 
0 

− ( v ω 
0 

−v ω 
f 
) 2 

2 v ω 
0 

a U 
) 
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In this scenario, vehicle ω accelerates with a U to speed v ω ( t ω 
1 

) at location x ω ( t ω 
1 

) at time t ω 
1 

, maintains the constant

speed v ω ( t ω 
1 

) until time t ω 
2 

at location x ω ( t ω 
2 

) , and accelerates again to speed v ω 
f 

upon arriving at the intersection at time

 

ω 
f 

. t ω 
1 

, v ω ( t ω 
1 

) , x ω ( t ω 
1 

) , t ω 
2 

, v ω ( t ω 
2 

) , and x ω ( t ω 
2 

) are calculated as 

v ω ( t ω 1 ) = v ω ( t ω 2 ) = 

2 a U x 
ω 
0 + 

(
v ω 0 

)2 −
(
v ω 

f 

)2 

2 

(
a U 

(
t ω 

f 
− t 0 

)
+ v ω 

0 
− v ω 

f 

) (105)

t ω 1 = t 0 + 

v ω 
(
t ω 1 

)
− v ω 0 

a U 
(106)

t ω 2 = t ω f −
v ω 

f 
− v ω 

(
t ω 1 

)
a U 

(107)

x ω ( t ω 1 ) = x ω 0 −
v ω 0 + v ω 

(
t ω 1 

)
2 

( t ω 1 − t 0 ) (108)

x ω ( t ω 2 ) = x ω ( t ω 1 ) − v ω ( t ω 1 ) ( t 
ω 
2 − t ω 1 ) (109)

Scenario 5: �t ω = �t ω 
OU 

Scenario 5–1: v ω 
0 

≥ v ω 
f 

( �t ω 
OU 

= 

x ω 
0 

v ω 
f 

− ( v ω 
0 

−v ω 
f 
) 2 

2 v ω 
f 

a L 
) 

In this scenario, vehicle ω first decelerates with − a L to speed v ω 
f 

at location x ω ( t ω 
1 

) at time t ω 
1 

, and then drives at the

constant speed v ω 
f 

until arriving at the intersection at time t ω 
f 

. Note that if v ω 
0 

= v ω 
f 

, only the segment with the constant

speed exists. t ω 
1 

, v ω ( t ω 
1 

) , and x ω ( t ω 
1 

) are calculated as 

t ω 1 = t 0 + 

v ω 0 − v ω 
f 

a L 
(110)

v ω ( t ω 1 ) = v ω f (111)

x ω ( t ω 1 ) = x ω 0 −
v ω 0 + v ω 

(
t ω 1 

)
2 

( t ω 1 − t 0 ) (112)

Scenario 5–2: v ω 
0 

< v ω 
f 

( �t ω 
OU 

= 

x ω 
0 

v ω 
0 

− ( v ω 
0 

−v ω 
f 
) 2 

2 v ω 
0 

a U 
) 

In this scenario, vehicle ω drives at the initial speed v ω 
0 

until time t ω 
1 

at location x ω ( t ω 
1 

) , and then accelerates with a U to

speed v ω 
f 

upon arriving at the intersection at time t ω 
f 

. t ω 
1 

, v ω ( t ω 
1 

) , and x ω ( t ω 
1 

) are calculated as 

t ω 1 = t ω f −
v ω 

f 
− v ω 0 

a U 
(113)

v ω ( t ω 1 ) = v ω 0 (114)

x ω ( t ω 1 ) = x ω 0 − v ω 0 ( t 
ω 
1 − t 0 ) (115)

Scenario 6: �t ω > �t ω 
OU 

The travel time �t ω 
OU 

is calculated in the Eq. (99) . In this scenario, vehicle ω decelerates with − a L to speed v ω ( t ω 
1 

) at

location x ω ( t ω 
1 

) at time t ω 
1 

, maintains this speed until time t ω 
2 

at location x ω ( t ω 
2 

) , and accelerates with a U to speed v ω 
f 

upon

arriving at the intersection at time t ω 
f 

. 

Travel time ( t ω 
1 

− t 0 ) is the root of the following equation: 

a U + a L 
2 a U 

a L t 
2 + 

(v t f − v 0 
a U 

−
(
t ω f − t 0 

))
a L t 

+ 

( 

v ω 0 

(
t ω f − t 0 

)
+ 

(
v ω 

f 
− v ω 0 

)2 

2 a U 
− x ω 0 

) 

= 0 (116)

As t ω 
2 

≥ t ω 
1 

, it can be proved that ( t ω 
1 

− t 0 ) takes the smaller root and t ω 
2 

is calculated as 

t ω 2 = t ω f −
v ω 

f 
− v ω 0 + a L 

(
t ω 1 − t 0 

)
a U 

(117)
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v ω ( t ω 1 ) = v ω ( t ω 2 ) = v ω 0 − a L ( t 
ω 
1 − t 0 ) (118) 

x ω ( t ω 1 ) = x ω 0 −
v ω 0 + v ω 

(
t ω 1 

)
2 

( t ω 1 − t 0 ) (119) 

x ω ( t ω 2 ) = x ω ( t ω 1 ) − v ω ( t ω 1 ) ( t 
ω 
2 − t ω 1 ) (120) 
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