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Abstract
Most of the existing connected vehicle (CV)-based traffic control models require a critical penetration rate. If the critical
penetration rate cannot be reached, then data from traditional sources (e.g., loop detectors) need to be added to improve
the performance. However, it can be expected that over the next 10 years or longer, the CV penetration will remain at a
low level. This paper presents a real-time detector-free adaptive signal control with low penetration of CVs (� 10%). A prob-
abilistic delay estimation model is proposed, which only requires a few critical CV trajectories. An adaptive signal control
algorithm based on dynamic programming is implemented utilizing estimated delay to calculate the performance function. If
no CV is observed during one signal cycle, historical traffic volume is used to generate signal timing plans. The proposed
model is evaluated at a real-world intersection in VISSIM with different demand levels and CV penetration rates. Results
show that the new model outperforms well-tuned actuated control regarding delay reduction, in all scenarios under only
10% penetrate rate. The results also suggest that the accuracy of historical traffic volume plays an important role in the per-
formance of the algorithm.

Driven by the rapid development of connected vehicle
(CV) technologies, we are on the cusp of a new revolu-
tion in transportation safety and mobility on a scale not
seen since the introduction of automobiles a century ago.
To evaluate the CV technologies in real-world environ-
ments, U.S. Department of Transportation (USDOT)
has initialized a number of deployment projects including
Safety Pilot Model Deployment project in Ann Arbor,
Michigan (1), CV pilot deployment projects (https://
www.its.dot.gov/pilots/), and Smart City Challenge
(https://www.transportation.gov/smartcity). Through
these projects, thousands of vehicles and hundreds of
intersections have/will be equipped with dedicated short-
range communication (DSRC) devices, which enable
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications to improve safety, mobility and
sustainability.

Traffic signal control system, as one of the critical
components of the urban transportation operations, can
also benefit from the CV technology. Through V2I com-
munications, the traffic control system receives vehicle
trajectories from nearby CVs to make control decisions.
Compared with traditional data from fixed-location
infrastructure-based sensors, CV data provide much
more information and have high potential in improving

signal operations. A number CV-based signal control
and performance estimation models have been proposed
(2–8). However, results from existing studies have shown
that minimum required penetration rates vary from dif-
ferent applications, but typically 20–30% penetration
rate is necessary (9). If the critical penetration rate cannot
be reached, then data from traditional sources (e.g., loop
detectors) need to be added to improve the performance
(10). Some studies intended to characterize individual
vehicle behaviors through limited CV trajectories. For
example, Goodall et al. estimated unequipped vehicle
location (5), and Feng et al. inferred both location and
speed of unequipped vehicles (3). Sun and Ban attempted
to reconstruct the entire trajectory of unequipped vehicles
(11). From a traffic signal control point of view, aggre-
gated performance measures such as volume, queue
length, travel time, and delay are sufficient to optimize
traffic signals. Although these aggregated metrics can be
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easily derived from individual vehicles,, it requires more
information and therefore higher penetration rates. A
systematic review of adaptive signal control with CVs
can be found in Jing et al. (12).

Despite substantial efforts in investing and developing
CV technologies in the past decade, over the next 10
years or longer the CV penetration rate is expected to
remain at a low level. Therefore, optimizing traffic sig-
nals with low penetration rates of CVs is essential and
will make an immediate impact on the state of the
practice.

To the best of the authors’ knowledge, there are only a
few studies that have focused on a low-penetration envi-
ronment. A study from Day and Bullock (9) proposed a
proof-of-concept study to optimize signal offsets with
limited CV market penetration. The penetration rates
used in the paper were from 0.1% to 50%. However,
instead of focusing on real-time implementation, their
analysis periods were set to 3 h (offline) and 15 min
(online). The selected analysis period may be sufficient
for offset adjustment as offset may not change much over
a few cycles. However, for real-time adaptive signal con-
trol, traffic conditions change significantly within 15 min-
utes. Moreover, the data used in this study were sampled
from loop detectors, and does not represent real CV tra-
jectory. Recent work done by Zheng and Liu utilized
aggregated CV trajectory data to estimate traffic volumes
(13). The model was formulated as a maximum likeli-
hood estimation problem and solved by expectation max-
imization algorithm. The overall penetration rates varied
from 3% to 12% at different approaches and time of
day, and the mean absolute percentage error (MAPE) of
the estimated volume was about 10%. However, this

method cannot be directly implemented for real-time sig-
nal operations because the trajectory data need to be
aggregated over days.

This paper extends the study by Zheng and Liu by
combining both historical and real-time trajectory data
to perform detector-free adaptive signal control. A sim-
ple probabilistic model is applied to estimate cycle-by-
cycle vehicle arrival times and delays based on estimated
average historical volume and a limited number of observed
critical CV trajectories. Then a dynamic programming
(DP)-based adaptive signal control algorithm is applied to
generate the optimal signal plan, using estimated vehicle
delay as the objective function. The proposed model is
tested in software-in-the-loop (SIL) simulation with various
low penetration rates (10%, 5%, 2%, and 0%) and demand
levels at a real-world intersection. Results are compared
with well-tuned actuated signal control.

The rest of this paper is organized as follows. The next
section describes the methodologies for CV trajectory-
based delay estimation and adaptive signal control mod-
els. Simulation results and discussions are then presented,
and conclusions and areas for further research are pro-
vided in the final section.

Methodology

Before presenting the method, Figure 1 shows the CV
trajectories in one lane under 10% penetration rate with
a demand level of 700 veh/h/ln, which represent the raw
data used in this paper. The figure shows that some CVs
passed the intersection without stop while others stopped
in the queue for the red signal. Some of the vehicle tra-
jectories are only partial because of lane changes. Note

Figure 1. Illustration of CV trajectories under 10% penetration rate.
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that during most of the cycles only one or two CVs were
observed, and during some cycles there was no CV at all.

Vehicle Delay Estimation

The core idea of using limited trajectories to estimate
delay is to utilize critical CV information. Critical CVs
are defined as the last stopped CV and the first non-
stopped CV. The last stopped CV provides a lower
boundary of queue length, whereas the first non-stopped
CV provides an upper boundary because the queue has
to be fully discharged before the arrival of the non-
stopped CV. For those cycles that do not have any
observed CV, an average hourly volume is used to gener-
ate vehicle arrival and departure times for delay estima-
tion. The hourly volume can be estimated from the
aggregation of historical CV trajectory data (13). It was
assumed the vehicle arrivals follow Poisson process with
mean arrival rate l. The cumulative number of arrivals
during time interval t is expressed as N(t);Poisson(lt).

Four cases are identified according to the existence of
observed CVs as shown in Figure 2.

Case 1: No Observed CV. If no CV is observed during the
entire cycle (Figure 2a), the only information that can be
utilized is the average volume estimated by historical
data. Given cycle length C, the total number of vehicles
arrive within the cycle n = lC, which is the mean of the
Poisson distribution. Total vehicle delay D is the summa-
tion of delay from each vehicle:

D=
Xround nð Þ

i= 1

Di ð1Þ

Delay of each vehicle is expressed by the following
equation:

Di = td
i � te

i � tf ð2Þ

where td
i is the departure time of vehicle i, te

i is the
entrance time of vehicle i, and tf is the free flow travel
time from entrance location de to the intersection. Free
flow travel time is assumed to be the same for all vehi-
cles. The entrance location is defined based on the com-
munication range (e.g., 300 m).

The departure time of each vehicle is calculated based
on the entrance time, free flow speed, signal timing, and
vehicle position in the queue:

td
i =max(tg + tsl + i*sf , t

e
i + tf ) ð3Þ
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Figure 2. Four scenarios based on critical CV trajectory: (a) no
CV; (b) only stopped CV; (c) only non-stopped CV; (d) both
stopped and non-stopped CV.
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where tg is the green start time, tsl is the start-up lost time,
and sf is the saturation headway (e.g., 2 s/veh). We do
not consider lane change so that the ith vehicle approach-
ing the intersection is also the ith vehicle in the queue.

Given the cumulative number of arrivals n during
interval C, the event occurrence time (entry time of each
individual vehicle) te

1, .te
n have the same distribution as

the order statistics corresponding to n independent ran-
dom variables uniformly distributed within the interval
(0,C) (14). The entrance time of each vehicle can be
expressed as:

te
i = tr � tf +CU ið Þ ð4Þ

where tr is red start time and U ið Þ is ith order statistics
from a standard uniform distribution. It can be proved
that ith order statistics of the standard uniform distribu-
tion follows a beta distribution U(i);B(i,n+1-i) (14).
The mean of the beta distribution is used to present arri-
val times of each vehicle:

U ið Þ= i= n+ 1ð Þ ð5Þ

Combining Equations 1–5, total delay can be
calculated.

Case 2: Only Stopped CV. If only stopped CVs are observed
during a cycle, then the cycle time is divided into two
intervals (Figure 2b). The first interval is the time period
from the entry time of the first stopped vehicle to the
entry time of the stopped CV (t1), and the second interval
is the time period after the entry time of the stopped CV
until the last vehicle that passes during the green time
(t2), with t1+ t2 = C.

All vehicles that enter during t1 are stopped vehicles,
as the stopped CV provides a lower boundary of the
queue. Based on the location of the stopped CV, the
total number of stopped vehicle n1 can be estimated,
assuming vehicle length is uniform and known:

n1 = round
ds

l

� �
ð6Þ

where ds is the stopping distance of the CV and l is the
average vehicle length.

The number of vehicles that enter during t2 is esti-
mated based on the average arrival rate because no more
CV information is available. That is n2 = lt2. The depar-
ture time of each vehicle during t1 and t2 is calculated
using Equations 7 and 8, respectively. Vehicles arrive
during t1 must depart at saturation flow rate because
they are all in the queue. Vehicles arrive during t2 may
pass the intersection without stop if they arrive after the
queue is fully discharged:

td
i = tg + tsl + i*sf i� n1 ð7Þ

td
i =max(tg + tsl + i*sf , t

e
i + tf ) n1\i� n1 + n2 ð8Þ

The entry time and delay calculation are similar to
Case 1.

Case 3: Only Non-Stopped CV. If only non-stopped CVs are
observed during the cycle, then the cycle time is also
divided into two intervals (Figure 2c). The first interval
is the time period from the entry time of the first stopped
vehicle to the entry time of the non-stopped CV (t1), and
the second interval is the time period after the entry time
of the non-stopped CV until the last vehicle that passes
during the green time (t2), with t1+ t2 = C.

The non-stopped CV provides an upper boundary of
the queue. Unlike stopped CV, it only gives the maxi-
mum possible number of vehicles entered during t1,
because the queue can be cleared before the arrival of the
non-stopped CV. The maximum possible number of
vehicles is calculated as:

nmax = td � tg � tsl

� �
=sf ð9Þ

where td is the departure time of the non-stopped CV.
The number of actual vehicles arrived during t1 can be
calculated as the summation of conditional probabilities:

n1 =
Xround nmaxð Þ

i= 1

i*P(X = ijX � round nmaxð Þ) ð10Þ

where X ; Poisson(lt1). The total estimated delay of
vehicles entered during t1 is the summation of total delays
of all possible numbers of entered vehicles multiplied by
the corresponding probability:

D1 =
Xround nmaxð Þ

j= 1

P X = jjX � round nmaxð Þð Þ
Xj

i= 1

Di, j

( )

ð11Þ

where Di, j is the delay of vehicle i given total j vehicles
enter during t1. The calculation of Di, j for each vehicle is
similar to Equations 3–5. The number of vehicles that
enter during t2 is estimated based on the average arrival
rate as in Case 2. Note that since the queue is already
fully discharged before the non-stopped CV, vehicles that
enter after the CV do not cause any delay.

Case 4: Both Stopped and Non-Stopped CV. In this case, both
the lower boundary and the upper boundary of vehicle
queue are provided by the stopped CV and non-stopped
CV, respectively (Figure 2d). Therefore, the cycle time is
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divided into three intervals. The first interval is the time
period from the entry time of first stopped vehicle to the
entry time of the non-stopped CV (t1). The second inter-
val is the time period from the entry time of the stopped
CV to the entry time of the non-stopped CV (t2), and the
third interval is after the entry time of the non-stopped
CV until the last vehicle that passes during the green
period (t3), with t1+ t2+ t3 = C. It is easy to see that
delay estimation of the three intervals are included in
previous three cases. To avoid redundancy, the detailed
calculation is skipped.

If multiple stopped and non-stopped CVs are observed
within one cycle, only the last stopped CV and the first
non-stopped CV are utilized because they represent the
critical information.

Adaptive Signal Optimization

The adaptive control algorithm is adapted from previous
research by Feng et al. (3). The algorithm generates an
optimal signal phase sequence and duration using a two-
level optimization model. The model is based on DP and
can apply different objective functions, including total
delay minimization and total queue length minimization.
In this paper, only total delay minimization is chosen as
the objective.

The algorithm uses an arrival table as the input to the
optimization model. The arrival table is a two-
dimensional matrix with time and phase. The value of
each cell is the number of vehicles that will arrive at the
stop-bar at time point t requesting phase p. It is gener-
ated based on CV trajectory data at the time of executing
the signal optimization. The original model adds all
queuing vehicles to the first line of the arrival table,
which does not consider accumulative delay generated
by already stopped vehicles. Delay of all vehicles is calcu-
lated from the time point when the signal optimization is

conducted. In the proposed delay estimation model,
entry times of each individual vehicle are generated so
that the arrival time of each vehicle at the stop-bar can
be calculated. As a result, the accumulative delay of each
queuing vehicle can be obtained. A new arrival table is
constructed to incorporate the delay from vehicles that
already stopped before the planning time.

Simulation Results and Discussion

To test the proposed models, a SIL simulation frame-
work is designed and implemented with VISSIM micro-
scopic simulation software. The SIL simulation
architecture is shown in Figure 3.

CVs in VISSIM simulation network generate basic
safety messages (BSMs) at a frequency of 10 Hz and
broadcast to the Data Processor module. This module
also requests Signal Phasing and Timing (SPaT) data
from the Econolite ASC/3 virtual controller. Processed
CV trajectory and signal information are then sent to
the delay estimation module. This module generates
the arrival table and sends to the adaptive control algo-
rithm, which is responsible for producing optimal sig-
nal timing plan with the objective to minimize total
vehicle delay. The optimal signal plan will be converted
into a series of control commands by the Signal
Controller Interface module and control virtual signal
controllers in VISSIM.

A real-world intersection at Huron Pkwy and
Plymouth Rd in Ann Arbor, Michigan is modeled in
VISSIM 9. The intersection geometry and signal phasing
are shown in Figure 4.

To evaluate the proposed delay estimation model, the
VISSIM model is run for 1 h, and all vehicle trajectories
are recorded and served as the ground truth. The traffic
signals are under actuated control so that the cycle
lengths and phase splits change over time. Figure 5

Figure 3. Software-in-the-loop simulation architecture.
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shows the comparison of the estimated total vehicle
delay and the actual vehicle delay of Phase 6 by lane with
10% penetration rate. There are total 31 full cycles oper-
ated within 1 h.

To further quantify the accuracy, the MAPE was cal-
culated for the estimated delay using the following
equation:

MAPE=
1

N

XN

i= 1

De
i � Dt

i

�� ��
Dt

i

ð12Þ

where N is the total number of cycles, De
i is the estimated

vehicle delay of cycle i, and Dt
i is the actual vehicle delay

of cycle i.
Under 10% penetration rate, the MAPE for Lane 1

and Lane 2 are 18.99% and 14.56%, respectively. If
two lanes are combined together, the MAPE for Phase
6 is 14.30%. The model was also tested under 0% pene-
tration rate, under which only hourly volume is used to
generate vehicle arrivals (i.e., always in Case 1 because
of no observed CV). The MAPE for Lane 1 and Lane 2
are 32.60% and 28.65%, respectively. If two lanes are
combined together, the MAPE values for Phase 6 is
30.49%. The result indicates that if only hourly volume
is used as input for the delay estimation model, the esti-
mated delays in each cycle significantly differ from the
actual delays. From Figure 5c, it can be seen that the
vehicle delay of each cycle varied from less than 500
veh�s to over 2000 veh�s. Estimation using only 10%
CV’s data can reduce the MAPE significantly, from
more than 30% to less than 15% percent. This suggests
that just a few critical CV trajectories are needed to

improve the vehicle delay estimation to a relatively
accurate level.

As the delay estimation algorithm generates individual
vehicle arrival times, an arrival table can be easily con-
structed and served as the input to the adaptive control
algorithm. Two scenarios with two different demand lev-
els and four penetration rates are evaluated. Scenario 1
assumes that the estimated hourly volume of each phase
(or average arrival rate l) is accurate. Scenario 2 assumes
the estimated hourly volume of each phase has 10%
error, which is more realistic based on field data (13).
Scenario 2 adds 10% of demand on phase one to four
and deducts 10% of demand on phase five to eight. The
objective of such adjustment is to maximize the distur-
bance on the signal timing. Two demand levels are con-
sidered as medium (critical v/c ratio 0.82) and congested
(critical v/c ratio 0.93) traffic conditions. Four penetra-
tion rates under evaluation are: 10%, 5%, 2%, and 0%.
Under 0% penetration rate, the adaptive control basi-
cally becomes a fixed-time signal plan, which is generated
by the hourly volume (always Case 1 in delay estimation
algorithm). The traffic demands used in each scenario are
summarized in Table 1. Note that the estimated hourly
volume with 10% error is only used in the delay estima-
tion model. The vehicle inputs in the VISSIM model are
the same for the two scenarios, which is the actual hourly
volume.

A total duration of 3900 s is executed in VISSIM
simulation for each scenario, each demand level, and
each penetration rate, with 300 s of warm-up period and
3600 s of data collection time. To capture the stochastic
demand pattern, each simulation run is repeated with

Figure 4. Geometry and signal phasing at Huron Pkwy & Plymouth Rd intersection.
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five random seeds. The results are compared with a
well-tuned fully actuated control, in which the minimum
green time, maximum green time, yellow interval, and all

red clearance interval are set to be the same as in the
adaptive control algorithm. The unit extension time of
the actuated control is set to 1.6 s, which is obtained by
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Figure 5. Estimated vehicle delay under 10% penetration rate: (a) lane 1; (b) lane 2; (c) combination of both lanes.

Table 1. Traffic Demands of Each Phase under Two Scenarios and Two Demand Levels

Unit: veh/h/ln P1 P2 P3 P4 P5 P6 P7 P8

Medium demand (Scenario 1) 187 675 133 450 150 656 150 333
Medium demand (Scenario 2) 206 742 146 495 135 591 135 300
Congested demand (Scenario 1) 212 765 167 525 170 744 175 417
Congested demand (Scenario 2) 233 841 182 577 153 670 157 375
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the recommendations from Signal Timing Manual (15).
Tables 2 and 3 show the delay comparison under two
demand levels.

The following observations are made by analyzing the
results:

1. When the penetration rate is 10%, the proposed
model outperforms well-tuned actuated control in
all cases. The total vehicle delay is decreased by
16.33% under congested demand level with accu-
rate volume estimation. Under medium demand

Table 2. Total Vehicle Delay in Seconds under Medium Demand Level

Random seed 1 2 3 4 5
Average

(SD) Delay reduction

Scenario 1: accurate hourly volume estimation
10% PR 143336 152534 135818 151338 137554 144311

(7674)
5.23%

5% PR 148165 157135 141530 158741 149372 150988
(7034)

0.84%

2% PR 168963 190877 152779 178334 168224 171835
(14046)

212.84%

Actuated 145736 162606 150933 158352 143770 152279
(8070)

N/A

Scenario 2: 10% hourly volume estimation error
10% PR 144404 155736 143002 155517 149726 149677

(5983)
1.71%

5% PR 157791 168744 146392 159259 151568 156750
(8447)

22.94%

2% PR 164093 182495 145614 170820 164004 165405
(13386)

28.62%

Actuated 145736 162606 150933 158352 143770 152279
(8070)

N/A

Note: SD = standard deviation.

Table 3. Total Vehicle Delay in Seconds under Congested Demand Level

Random seed 1 2 3 4 5
Average

(SD) Delay reduction

Scenario 1: accurate hourly volume estimation
10% PR 227684 248169 222959 260393 231441 238129

(15656)
16.33%

5% PR 240871 258387 222687 260856 231085 242777
(16692)

14.70%

2% PR 259532 281069 240524 280446 242579 260830
(19631)

8.35%

0% PR 327241 367273 288306 344282 261268 317674
(42731)

211.62%

Actuated 256728 305282 279268 330017 251736 284606
(33074)

N/A

Scenario 2: 10% hourly volume estimation error
10% PR 252124 282365 243068 279463 258485 263101

(17189)
7.56%

5% PR 267432 283013. 242671 271912 249347 262875
(16577)

7.64%

2% PR 270629 339032 254176 317639 281232 292541
(34897)

22.79%

0% PR 346828 380832 356243 442983 313010 367979
(48470)

229.29%

Actuated 256728 305282 279268 330017 251736 284606
(33074)

N/A

Note: SD = standard deviation.
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level with 10% volume estimation error, the vehi-
cle delay is still reduced by 1.71%. As the pene-
tration rate decreases, the total delay tends to
increase.

2. The hourly volume estimated from historical data
has a significant impact on the performance.
Under same demand level and same penetration
rate, the results with 10% volume estimation
error are all worse than no error in volume esti-
mation. When the algorithms are executed under
low penetration rates, it is common that no CV is
observed within the entire cycle. Then the hourly
volume serves as the only data for determining
the phase duration.

3. Besides penetration rate, the absolute number of
observed CVs is also crucial to the performance
of the algorithm. This explains why the algorithm
performs better under congested demand level
than medium demand level with the same pene-
tration rate. Under congested demand level with
accurate volume estimation, even 2% penetration
has a delay reduction of 8.35%. However, under
medium demand level with accurate volume esti-
mation, model performance with 5% penetration
rate is almost the same as actuated control.

4. Vehicle delays with 10% and 5% penetration
rates under congested demand level are similar, in
both scenarios. This indicates that a few critical
vehicle trajectories are enough to make an accu-
rate estimation of vehicle delay. Higher penetra-
tion rates only bring marginal benefits.

5. When the algorithm is executed under 0% pene-
tration rate, the adaptive control becomes a fixed-
time control. Because no CV trajectory is avail-
able, the control decision is made only based esti-
mated hourly volume, which is a set value. The
results under such conditions are significantly
worse than other cases, which supports a well-
accepted argument that fixed-time control cannot
accommodate short-time demand fluctuation,
even if the average volume is accurate. Moreover,
under congested demand level, the intersection
under fixed-time control may enter oversaturated
condition as a result of demand fluctuation, and
the delay increases significantly. On the other
hand, actuated and adaptive control can handle
the demand fluctuation better and prevent the
intersection entering the oversaturated condition.

Conclusion and Further Research

This paper presents a detector-free real-time adaptive sig-
nal control model in a low CV penetration environment.
Critical CVs were defined, which referred to the last
stopped CV in the queue and the first non-stopped CV

that passed the intersection. They provided the lower and
upper boundaries of queue length, respectively. Based on
critical CV information, a simple delay estimation model
was proposed. Then the model was integrated with an
adaptive control algorithm to generate optimal signal
plans with the objective of minimizing vehicle delay.
Microscopic simulation results showed the proposed
model worked well under 10% penetration rate in all sce-
narios. Compared with well-tuned actuated control, the
total delay reduction can reach as much as 16.3%.

The new model has two significant advantages. First,
it does not require any data from infrastructure-based
sensors, which usually have considerable high installation
and maintenance costs. Second, it only needs at most
10% CV penetration rate, so that it can be implemented
at an early stage of CV deployment. For example, the
Ann Arbor Connected Vehicle Test Environment
(AACVTE) project is targeting to equip up to 5,000 vehi-
cles in the next few years, which accounts for about 5%
of total vehicles in Ann Arbor metro area (https://
www.its.dot.gov/research_archives/safety/aacvte.htm).
The proposed model has great potential to be implemen-
ted at real-world intersections in the near future.

One direction for further research is to extend the cur-
rent model to a corridor level, where the vehicle arrivals
may not be Poisson distributed, and signal coordina-
tion needs to be considered. One of the difficulties lies
in the determination of platoon size and speed on coor-
dinated phases to dynamically update offset and split.
In addition, the current model relies on the estimated
average volume from historical data as the first step. It
would be very interesting to develop an integrated plat-
form that combines the volume estimation algorithm,
as in Zheng and Liu (13), and the real-time adaptive
signal control together so that the estimated volumes
can be updated dynamically when new CV trajectories
become available.
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