
Research Article

Transportation Research Record
1–12
� National Academy of Sciences:
Transportation Research Board 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0361198120912424
journals.sagepub.com/home/trr

Data Infrastructure for Connected
Vehicle Applications

Xingmin Wang1, Shengyin Shen2, Debra Bezzina2,
James R. Sayer2, Henry X. Liu1,2, and Yiheng Feng2

Abstract
Ann Arbor Connected Vehicle Test Environment (AACVTE) is the world’s largest operational, real-world deployment of con-
nected vehicles (CVs) and connected infrastructure, with over 2,500 vehicles and 74 infrastructure sites, including intersec-
tions, midblocks, and highway ramps. The AACVTE generates a massive amount of data on a scale not seen in the traditional
transportation systems, which provides a unique opportunity for developing a wide range of connected vehicle (CV) applica-
tions. This paper introduces a data infrastructure that processes the CV data and provides interfaces to support real-time or
near real-time CV applications. There are three major components of the data infrastructure: data receiving, data pre-
processing, and visualization including the performance measurements generation. The data processing algorithms include sig-
nal phasing and timing (SPaT) data compression, lane phase mapping identification, trajectory data map matching, and global
positioning system (GPS) coordinates conversion. Simple performance measures are derived from the processed data, includ-
ing the time–space diagram, vehicle delay, and observed queue length. Finally, a web-based interface is designed to visualize
the data. A list of potential CV applications including traffic state estimation, traffic control, and safety, which can be built on
this connected data infrastructure is discussed.

Connected vehicle (CV) technology can significantly
improve safety, mobility, system efficiency and reduce
fuel consumption and emissions, and has thus attracted
worldwide attention. In the U.S., several large-scale real-
world deployments of CV systems have been carried out
in the past few years. The U.S. Department of
Transportation (U.S. DOT) initiated the Safety Pilot
Model Deployment (SPMD) project to validate the dedi-
cated short-range communication (DSRC) technology
for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) safety applications in 2011 (1). Later in 2016, U.S.
DOT launched three more CV pilot programs in New
York City, Tampa, Florida, and Wyoming as national
efforts to deploy, test, and operationalize CV-based
transportation systems (2). In addition to U.S. DOT,
state and local transportation agencies and universities
are also applying and testing CV technology for a wide
range of applications (e.g., the City of Denver, Utah
DOT, and Maricopa County, AZ).

CV systems generate a massive amount of data on a
scale not seen in the traditional transportation systems,
from both on-board units (OBUs) and road-side units
(RSUs). The Society of Automotive Engineers (SAE)
defines the formats and information contained in all CV
data types in the SAE J2735_201603 standard. Different

CV applications require subsets of data based on both
time and spatial contexts. For example, traffic manage-
ment applications may need network-wide, but less time-
sensitive data, and safety-related applications require
real-time, but localized data within a small region. As a
result, a data infrastructure is needed to process the raw
data and provide interfaces to a variety of CV
applications.

The main objective of this paper is to develop such a
data infrastructure for CV systems to support real-time
or near real-time CV applications. The data infrastruc-
ture is built on the Ann Arbor Connected Vehicle Test
Environment (AACVTE), which will be introduced in
the next section. Three important CV data types are inte-
grated: basic safety messages (BSMs) from connected
vehicles (CVs), signal phasing and timing (SPaT) from
signal controllers, as well as static map data to provide
geofencing and map-matching functions. There are three
major components of the data infrastructure: data
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processing, performance measurement generation, and
visualization. A set of algorithms are developed in the
data processing component to convert the raw data to
processed data. The algorithms include SPaT data com-
pression, lane phase mapping identification, trajectory
data map matching, and global positioning system
(GPS) coordinates conversion. Simple performance mea-
sures are derived from the processed data, including the
time–space diagram, vehicle delay, and observed queue
length. Finally, a web-based interface is designed to
visualize the data. After introducing the data infrastruc-
ture, a list of potential CV applications that can be built
on this infrastructure is discussed. This paper gives one
implementation example detailing how to build a CV
data infrastructure.

The rest of the paper is organized as follows. The next
section gives a brief introduction to the AACVTE project
and CV data. The following section describes the data
infrastructure, including data processing algorithms, per-
formance measures generation, and visualization inter-
face. The final two sections discuss the potential CV
applications and conclude the paper.

AACVTE Project

AACVTE is the world’s largest operational, real-world
deployment of connected vehicles and connected infra-
structure, built on the existing Ann Arbor SPMD
project. Over 2,500 vehicles (e.g., passenger vehicles,
buses, and trucks) are equipped with CV devices includ-
ing passenger vehicles, commercial trucks, and buses.
The vehicles are equipped with one of the two types of
DSRC on-board units: aftermarket safety device (ASD)
or vehicle awareness device (VAD). The aftermath safety
devices (ASDs) enable V2V communication for safety
applications, including forward collision warning (FCW)
and intersection movement assist (IMA), among others.
The vehicle awareness devices (VADs) simply transmit
the basic safety message (BSM) to seed the environment
with connected vehicles to maximize interactions for opti-
mal technology and application development. Owing to
the number of different makes and models that comprise
the AACVTE fleet, neither ASDs nor VADs are con-
nected to the vehicle controller area network (CAN). In
addition to the ASD or VAD, the vehicles are equipped
with a global navigation satellite system (GNSS) antenna
and a DSRC antenna. The GNSS antenna is mounted
exterior to the vehicle to achieve the best GPS perfor-
mance. The exact mounting location varies, depending
on the vehicle type. Both devices have implemented
untethered dead reckoning to further enhance the
performance.

Furthermore, the SPMD infrastructure footprint has
grown from 25 sites to over 70 infrastructure locations

equipped with RSUs. Figure 1 shows the AACVTE
deployment area and infrastructure sites. The sites
include:

� 2 Curve speed warning sites (4 RSUs),
� 4 Pedestrian mid-block crosswalks (4 RSUs),
� 60 Intersections (5 at freeway entrance/exit

ramps),
� 1 Roundabout,
� 5 staging/testing sites

The RSUs located at the 60 intersections are con-
nected to the traffic signal controllers and broadcast
SPaT messages and MAP messages to support
infrastructure-related applications such as red light viola-
tion warning (RLVW) and curve speed warning (CSW).
All vehicle and infrastructure communications follow
national and international standards including SAE
J2735, SAE J2945, IEEE 1609.2, IEEE 1609.3, and so
forth, and, with the exception of the five staging/
testing sites, utilize production security certificates to
ensure security and privacy. Through the City’s optical
fiber network, both BSMs and SPaT data are forwarded
to the data server located at the University of Michigan
Transportation Research Institute (UMTRI) in real-time.

Data Infrastructure

The framework of the data infrastructure is shown in
Figure 2. After receiving and decoding, the SPaT and
BSM data are combined with map data for pre-process-
ing. The pre-processing step generates event-based signal
data (i.e., the timestamp at which the signal phase state
changes and its duration) and matched vehicle trajec-
tories, from which the time–space diagrams can be
constructed.

Receiving the Data

The real-time CV data are forwarded from the infra-
structure side (i.e., the road-side unit [RSU]) through the
IPv6 network. The SPaT data are directly collected from
the signal controllers, and the BSM data only contains
trajectory segments if the vehicles are within the commu-
nication ranges of the RSUs. Although MAP messages
are broadcast through the RSU, we use data from
OpenStreetMap for map-matching algorithms, because
the MAP data is static and does not change over time
(3). An extraction tool is developed to extract vehicle
movements at the intersection (e.g., eastbound left turn)
from the original map data.

As the raw BSM data follows the SAE J2735 standard
and are encoded with the UPER (i.e., unaligned packed
encoding rule) rules, a message decoder is developed to
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transfer the hex strings into C++ class objects for fur-
ther processing. To verify whether the latency and fre-
quency of the received BSM are within accepted ranges,

timestamps of when the BSM/SPaT are received at the
server and timestamps for when they are generated are
compared. The result is shown in Table 1. The average

Figure 1. Ann Arbor connected vehicle test environment infrastructure deployment locations.
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communication delays of both BSM and SPaT are within
1 s, and the frequency is 10Hz. Note that this data infra-
structure is not designed for safety-critical applications,
which should directly rely on V2V communications. The
delay presented in Table 1 is sufficiently low for most
real-time infrastructure applications (e.g., adaptive signal
control).

Data Pre-processing

Signal Phase Mapping Identification. The SPaT data sent
from the signal controller includes a timestamp and the
states of all signal phases at the intersection. However,
the mapping relationships between the signal phases and
vehicle movements (e.g., left-turn and through move-
ment of four directions) are not known. Moreover, inter-
sections in the real world can be very diverse, they have
different numbers of approaches and the left-turn move-
ments are not always protected, and so forth. Usually,
the signal phase mapping information is obtained from
field observations or directly from local transportation
agencies. However, this method cannot dynamically
update the mapping relationships if the configurations of
traffic signals or the road geometry are updated. As a

result, an automatic identification approach is proposed
below.

As most vehicles do not pass the intersection when the
signal is red, historical SPaT and trajectory data are
aggregated to estimate the phase mapping relationships
by minimizing the ratio of vehicles passing through the
intersection during the red time. Let s= ½s1, s2, . . . , sn�T ,
fsig= f1, 2, . . . , ng be the mapping relationship between
the signal state and the real-world vehicle movement and
si = j represent the ith phase of the signal, corresponding
to movement j. An optimization problem is formulated
using aggregated historical data to automatically infer
the phase mapping relationship. As the mapping relation-
ships remain unchanged, we can aggregate as much data
as needed. Usually, one hundred trajectories per move-
ment is sufficient for an accurate estimation. Firstly, the
map matching algorithm, introduced in the next section
locates the vehicle trajectory to the corresponding move-
ment and the time at which the vehicle passed the inter-
section is calculated. Then, the number of vehicles of
each movement passing the intersection during the red
time given the mapping relationship s is calculated. Let
N red

i (si) be the number of vehicles that violate the traffic
signal of phase i, then the optimization problem can be
written as:

s= argmin
X

i

N red
i (si) ð1Þ

subject to fs1, . . . , sng= f1, 2, . . . , ng. The results of the
phase mapping can be verified by plotting the time–space
diagram and checking the violations.

Trajectory Data Map-Matching. Map-matching is an impor-
tant pre-processing step that connects BSM data with
road geometry. The BSM data is collected by the RSUs

Figure 2. Framework of the connected vehicle data infrastructure.

Table 1. Frequency and Communication Delay of BSM/SPaT
Data

Data type BSM SPaT

Resolution 0.1 s 0.1 s
Average communication delay 0.265 s 0.890 s
Standard deviation of delay 1.36 s 0.600 s

Note: BSM = basic safety message; SPaT = signal phasing and timing.
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installed at intersections. It contains the vehicle identifi-
cation (ID), timestamps, and the GPS coordinates of the
vehicle that can be used to construct the trajectory.

A hidden Markov model (HMM) is applied to match
the trajectory to the corresponding movement. This
HMM map-matching model proposed by Newson and
Krumm can find the most likely route of the trajectory
considering both the distance of the trajectory to the
route and the path feasibility (4). In our scenario, as the
trajectory data are collected close to intersections, we
only need to match the trajectory to its corresponding
movement. Currently, the trajectories are not matched to
specific lanes owing to the GPS accuracy.

Assume the trajectory of a vehicle is denoted by
x= ½x1, x2, . . . , xn�T and each element of the vector is a
GPS location with a latitude and longitude. Let
ri = ½ri1, ri2, . . . , rim�T be the GPS coordinates of the ith

movement of the intersection given by the map data. R
is the movement set of the intersection, so that ri 2 R.
Then, the corresponding movement of the trajectory is
obtained by solving the following optimization problem:

r(x)= argmax
ri2R

Yn

q= 1

P(xqjri) �
Yn�1

q= 1

P((xq, xq+ 1)jri) ð2Þ

where P(xqjri) is the probability that the GPS point xq

belongs to the movement ri and P((xq, xq+ 1)jri) is the
transfer probability of the trajectory point transferring
from xq to xq+ 1 given trajectory x belonging to the move-
ment ri.

For P(xqjri), we assume the errors coming from the
GPS receiver follow a Gaussian distribution with the
probability:

P(xqjri)=
1ffiffiffiffiffiffi
2p
p

s
exp(� jd(xq, ri)j2=(2s2)) 8q ð3Þ

where d(xq, ri) is the distance between the point xq and
the movement ri.

The transfer probability aims at capturing the path fea-
sibility (4). In our case, the path is always feasible because
the ‘‘feasible’’ movements have already been extracted
from the map. However, the headings of the vehicle tra-
jectory and the roadway need to be checked. If only the
distance between the trajectory and the movement is con-
sidered, we cannot distinguish, for example, the through
movements of the opposite direction, as vehicles traveling
in the opposite direction have a very close set of GPS
coordinates, but in a reversed sequence. Therefore, the
transfer probability is needed to match the direction or
heading of the trajectory and the roadway (i.e., move-
ment). The transfer probability is written as:

P((xq, xq+ 1)jri)=
1

b
exp(� f((xq, xq+ 1), ri)=b) ð4Þ

where f((xq, xq+ 1), ri) 2 ½0,p� is the angle between the
vector (xq, xq+ 1) and ri. Similar to the previously pub-
lished literature, it is assumed that the transfer probabil-
ity follows an exponential distribution as the historical
data showed that the heading between the roads and the
trajectories can be approximated by an exponential dis-
tribution (4). As ri is composed of piece-wise line seg-
ments, the f((xq, xq+ 1), ri) can be calculated as the angle
between the vector (xq, xq+ 1) and the closest line segment
of ri to xq.

By substituting Equations 3 and 4 into Equation 2 we
can get the final equation for the trajectory map-match.
The variance of the Gaussian distribution s and the
parameter of the exponential distribution b determines
the weights of these two factors.

Figure 3 shows the result of map-matching of one
day’s data at the intersection of Plymouth Rd and Green
Rd, Ann Arbor. The blue lines and blue dots are the geo-
metric coordinates of the road and the red lines are
matched trajectories. Each subplot is a phase or move-
ment of the intersection. The number in the subtitle is
the number of matched trajectories. There are still some
outliers in the figure as the map-matching model can
only match the trajectory to the most likely movement
among all of the movements. The trajectory needs to be
further checked before final use. Similar to the signal
phase mapping, the result of map matching can be fur-
ther verified with time–space diagrams.

Distance to the Intersection. After grouping the trajectory
data to the corresponding movements, the original GPS
coordinates are converted to the distance to the intersec-
tion. More accurately, 2-D GPS coordinates are con-
verted to 1-D intrinsic coordinates and the closest point
of the trajectory to the intersection is set as the zero point
of distance.

Let x= ½x1, . . . , xn�T be the GPS coordinates of a tra-
jectory in which each element xi is the GPS coordinates.
y is the GPS coordinates of the intersection center from
the map data. The first step is to find the closest point to
the intersection as the zero point of the trajectory. The
trajectory can be seen as a set of piece-wise line segments
X= fx̂i =(xi, xi+ 1)g, i= 1, . . . , n� 1, which is the lin-
ear interpolation of the trajectory. Let d(y, x̂i) be the dis-
tance between the point y and the line segment x̂i and x�i
is the point belonging to x̂i and gives the minimum dis-
tance to the point y. Then, the zero point of the trajec-
tory is given by:

i= arg min
k = 1, 2..., n�1

d(y, x̂k) x�i = argmin
x2x̂i

d(x, y) ð5Þ

where x�i is the closest point from the intersection to the
interpolated trajectory. Put this point to the original
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vector GPS coordinates of the intersection and a new
vector with an additional point x�i is constructed:

x0= ½x1, . . . xi, x
�
i , xi+ 1, . . . , xn�T ð6Þ

Then, the distance of each element xk to the center of
the intersection can be expressed by:

~xk =
Xk�1

m= 1

d(xm, xm+ 1)�
Xi�1

m= 1

d(xm, xm+ 1)� d(xi, x
�
i ) ð7Þ

where d(x, y) gives the distance between two GPS coordi-
nates. In this way, each of the original GPS coordinates
to the distance to the intersection can be calculated. The
negative value indicates that the trajectory is from the
upstream of the intersection, and a positive value indi-
cates downstream.

Time–Space Diagram Generation. The time–space diagram
is generated by combining the SPaT data and the
matched trajectory data. The time–space diagram pro-
vides intuitive information about the traffic state, such
as whether the movement is over-saturated. Owing to the
low penetration rate of CV, the trajectories from multi-
ple cycles are aggregated to plot the time–space diagram.
This is based on the assumption that the traffic state at
the same time of day (TOD) is relatively stationary.
Different times of day (TODs) are needed for the entire

day to make the traffic state within one TOD relatively
stable. Although the aggregated data cannot be applied
to estimate the real-time traffic state, it can still be used
to estimate long-term performance. Readers can refer to
previously published studies for estimation of the differ-
ent traffic measures, including the penetration rate,
queue length, and volume using aggregated trajectory
data (5–7).

The City of Ann Arbor has implemented both fixed-
time and actuated/adaptive signal plans at a different
intersection. For fixed-time intersections, to draw the
time–space diagram, we only need to shift the trajectory
by integer numbers of cycle lengths. For the adaptive or
actuate signal timing plans with variant cycle lengths, we
draw the time–space diagram by shifting the trajectory
temporally to make all trajectories share the same cycle
start time (e.g., green start). This can be easily achieved
by subtracting the timestamps of the trajectory using the
green starting time of the cycle in which the trajectory
passes the intersection. Figure 4 shows the time–space
diagram generated from all CV trajectories that passed
the intersection of Maiden Lane and Fuller in Ann
Arbor during the evening peak hour between 5:00 and
7:00 p.m. from 01/06/2020 to 01/10/2020 (five weekdays).
Each sub-figure represents aggregated CV trajectories of
each signal phase in all five days. It is assumed that traf-
fic demands and patterns during the weekday morning
peak hours are similar. Phases 2, 4, 6, and 8 are through

Figure 3. Trajectory map-matching results.
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movements, and the others are left-turn movements. As
the trajectory only shares the same green start time, only
the departure shockwave has valid physical meaning.
The departure shockwave shows the queue dissipation
pattern and can also be applied to estimate the shock-
wave speed and saturation flow rate (8). In addition, we
can also shift the trajectory to make them have the same
red-start time so that the arrival patterns at the red signal
can be obtained.

Performance Measurement and Visualization

Delay and Stop Position Measures. Two basic intersection
performance measures are derived based on the time–
space diagram: vehicle stop delay and stop position, to
evaluate the performance of the traffic signal control.
The delay scatters and the stop position scatters are
shown in Figures 5 and 6. The data also comes from 01/
06/2020 to 01/10/2020 at the intersection of Maiden
Lane and Fuller in Ann Arbor. Each subplot is a phase/
movement of the intersection and each blue dot stands
for one vehicle. The x-axis is the time of day (0–24 h),
and the y-axis is the delay in seconds and the stop posi-
tion in meters correspondingly.

For the stop delay scatters, vehicle stop delays are cal-
culated by summarizing the duration of time when the
speed of the trajectory is less than the threshold (2 m/s).
Compared with the total delay estimated by subtracting

the actual travel time by free-flow travel time, the stop
delay estimation method is more robust without know-
ing the accurate free-flow speed and can directly quantify
the waiting time caused by the intersection. For the stop
position scatters, the stop positions are estimated as the
maximum distance to the intersection at which the vehi-
cle comes to a complete stop. The stop distance is set to
zero if the vehicle passes the intersection without stop-
ping. It should be noted that the zero value of the y-axis
is not exactly the location of the stop bar but the center
of the intersection, therefore the stop positions (i.e., blue
points) start from around 20m, which is the distance
from the stop bar to the intersection center. The stop
positions reflect the queue lengths of the movement,
which are the inputs for many traffic management
applications.

Both the stop delay and stop position scatters can be
used to measure the performance of the intersection. For
example, if there is quite a proportion of vehicles waiting
over the average cycle length, then the movement is over-
saturated. They can also be used to evaluate the balance
of green split among movements.

Data Visualization Interface. A web-based interface was
designed and developed to manage the data and use it as
a visualization tool. Figure 7 shows the home page of the
website (http://aacvlive.umtri.umich.edu/home.html).
The website displays real-time information, including the

Figure 4. Time–space diagrams of Maiden Lane and Fuller intersection.
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CV trajectory data and traffic signal data. Each blue dot
on the map represents a CV in the vicinity of an RSU.
Each red mark represents one RSU at the intersection.

Real-time signal states are shown on the right after click-
ing the intersection marks. Basic intersection statistics,
including the number of vehicles, average stop delay, and

Figure 5. Stop delay scatters of Maiden Lane and Fuller intersection.

Figure 6. Stop position scatters of Maiden Lane and Fuller intersection.
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average stop position, are summarized for each move-
ment. The website can also plot the time–space diagram
and delay diagram of each movement. This website is
also embedded with a data query function through which
the users can acquire historical data and diagrams. All of
these functions make this website a powerful visualiza-
tion and evaluation tool both for researches and traffic
engineers at local transportation agencies.

Potential Applications

The main purpose of developing such a data infrastructure
is to serve as a pre-step in developing a variety of vehicle
trajectory based mobility and safety applications. For
example, the generated time-space diagrams provide direct
information on the intersection performance measures
including vehicle delay, queue length, and numbers of
stops, which can be used in traffic control applications.
Meanwhile, by matching trajectories temporally and spa-
tially, the interactions between different vehicles (e.g., time
to collision) can be captured, which can be used as surro-
gate measures for safety applications. If the CV penetra-
tion rate is low, trajectory data need to be aggregated for a
certain time period to provide sufficient information. If the
CV penetration rate increases in the future, real-time appli-
cations will be supported. However, the design of the data
infrastructure can remain unchanged. In the following,
some representative applications that can be implemented
based on the proposed data infrastructure are introduced.

Traffic State Estimation and Traffic Signal Control

Traffic state estimation provides necessary information
for both real-time signal control and long-term traffic
management. As a new data source, CV trajectory data
can be used to estimate traffic states such as traffic
volumes, queue lengths, or to directly construct the tra-
jectory of unequipped vehicles. Traffic state estimation
using CV data faces different challenges compared with
traditional loop detector data. For loop detector data,
the total count of vehicles at specific locations can be
obtained. From CV data, however, it is difficult to
obtain information from the entire population, but a low
proportion of all vehicles, also called the penetration
rate. One of the biggest challenges using CV data is how
to estimate the traffic state with a low and unknown
penetration rate.

Traffic state estimation using CV data has drawn sig-
nificant attention over the years. For urban traffic net-
works, the estimation methods can be roughly divided
into two categories, probability-based methods and
shockwave-based methods. For the probability-based
methods, the basic idea is to treat each CV as an event
and use maximum likelihood methods to estimate the
unknown parameters given the CV data. Comert and
Cetin developed different models to estimate the cycle-
by-cycle queue length at isolated intersections based on a
known CV penetration rate and queue length distribu-
tion (9, 10). However, the real-world penetration rate is
unknown in most of the cases, Wong et al. proposed an

Figure 7. Ann Arbor connected vehicle test environment live traffic with basic statistics and diagrams.
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unbiased method to estimate the penetration rate and
Zhao et al. estimated both the penetration rate and the
queue length based on the assumption that CV data have
the same queue lengths distribution as regular vehicles
(6, 7). In addition to the queue length estimation, Zheng
and Liu used the EM algorithm to estimate the traffic
volumes at a signalized intersection, which assumed that
the vehicles’ arrival followed a Poisson process (5). For
the shockwave-based methods, the basic idea is to detect
the shockwave in the time–space diagram and use the
kinematic wave theory to estimate the traffic state.
Cheng et al. used a classification method to detect the
shockwave in the time–space diagram and used the
shockwaves to estimate the cycle-by-cycle queue length
(11). Ban and Hao used travel time to construct the
shockwaves and estimate the queue lengths and the sig-
nal timing plan (12, 13). Wang et al. used the RANSAC
algorithm to detect the departure shockwave and esti-
mated the shockwave speed and saturation flow rate at
signalized intersections (8). Vasudevan et al. used sparse
BSMs to predict the congestion state with a high tem-
poral and spatial resolution (14).

There are also other models proposed to estimate the
traffic state using the CV. Unlike the loop detector data,
which is more convenient to use a Eulerian expression,
the CV data can be directly used in the Lagrangian coor-
dinates (15). Zheng et al. proposed a stochastic traffic
model in Lagrangian coordinates and used the Kalman
filter to construct the complete trajectories using a fusion
of detector and CV data (16). To deal with the nonlinear
dynamic model, Xie et al. proposed a generic trajectory
reconstruction framework at a signalized intersection
using a particle filter (17).

One direct application of traffic state estimation is
traffic signal optimization, in which the objective func-
tion is usually formulated as one or more traffic states
such as the queue length, delay, and travel time. Goodall
et al. proposed a predictive microscopic simulation algo-
rithm which used the position, heading, and speed from
CVs to predict the traffic condition and optimize the traf-
fic signals (18). Feng et al. used the location and speed of
CV data and proposed a two-level optimization based on
dynamic programming to allocate the green time (19).
Feng et al. also proposed a model to estimate the delay
and optimize the signal control in a low penetration rate
CV environment (20).

Safety Applications

Leveraging the BSM data from CVs under different mar-
ket penetration rates (MPRs), we can estimate the surro-
gate traffic safety performance from two perspectives
(21): 1) individual vehicle dynamics based; and 2) inter-
vehicle proximity based. The first set of safety measures

may include vehicle speed, acceleration, jerk, and stop
frequency, which can be used to infer the driver’s states
and his/her decision-making process. Mixed models can
be built to identify driver behavior factors that are
related to safety. The BSMs can be further fused with
SPaT and MAP data to analyze the driver’s behavior at
locations of high interest. The derived information can
be employed to estimate the likelihood of an individual
vehicle’s involvement in conflicts with other vehicles. For
example, studies from Arvin and Kamrani quantified
and used about 30 measures of driving volatility by using
speed, longitudinal and lateral acceleration, and yaw-
rate, extracted from BSMs at signalized intersections(22,
23). These volatilities were then used to explain crash fre-
quencies at intersections. It was found that erratic longi-
tudinal/lateral movements increased the risk of crashes.
Inter-vehicle safety measures such as time-to-collision
(TTC), post-encroachment time (PET) can be imported
to the analysis tools such as Pu et al. to estimate the
occurrence of potential traffic conflicts (24). Both tem-
poral and spatial correlations of CV trajectories can be
explored to find the interactions between different CVs.
A new surrogate safety measure (SSM) named time to
collision with disturbance (TTCD) was proposed in Xie
et al. for risk identification (25). The new measure can
achieve a higher Pearson’s correlation coefficient with
rear-end crash rate than other traditional SSMs. All of
the aforementioned safety studies utilized BSMs from
the Safety Pilot database, which was collected in the
SPMD project before AACVTE.

Conclusions

AACVTE is the world’s largest operational CV system
and is collecting massive CV data from vehicles and
infrastructure sites. This paper developed a data infra-
structure using this data to support both safety and
mobility CV applications.

The data infrastructure mainly includes three parts:
data receiving, data pre-processing, and visualization
including the performance measurements. In the data
pre-processing part, an optimization problem was formu-
lated, which can automatically infer the phase mapping
relationship combining BSMs and SPaT. The timestamp
and GPS location were used to construct the vehicle tra-
jectory from BSMs, and a HMM was used to match the
trajectory to the road network. Then, the trajectory with
GPS coordinates was converted to the distance to the
intersection. Time–space diagrams were generated by
combining trajectory data and SPaT data. For the per-
formance measurements, stop delay and stop position
scatters were generated. Both diagrams can be used to
evaluate the performance of intersection level signal con-
trol. For the visualization part, a website was developed
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as the data visualization and management interface. The
website displays real-time CV trajectories, traffic signal
information, and basic statistics. Users can also query
historical data through this website.

This data infrastructure provides a solid foundation in
developing further CV applications. Some of the applica-
tions are discussed, including traffic state estimation,
traffic signal control, and safety measurement.
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