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Abstract—Testing scenario library generation (TSLG) is a
critical step for the development and deployment of connected
and automated vehicles (CAVs). In Part I of this study, a general
methodology for TSLG is proposed, and theoretical properties
are investigated regarding the accuracy and efficiency of CAV
evaluation. This paper aims to provide implementation examples
and guidelines, and to enhance the proposed methodology under
high-dimensional scenarios. Three typical cases, including cut-
in, highway-exit, and car-following, are designed and studied in
this paper. For each case, the process of library generation and
CAV evaluation is elaborated. To address the challenges brought
by high dimensionality, the proposed methodology is further
enhanced by reinforcement learning technique. For all three
cases, results show that the proposed methods can accelerate
the CAV evaluation process by multiple magnitudes with same
evaluation accuracy, if compared with the on-road test method.

Index Terms—Connected and Automated Vehicles, Testing
Scenario Library, Safety, Functionality, Reinforcement Learning

I. INTRODUCTION

TESTING and evaluation is a critical step in the devel-
opment and deployment of connected and automated

vehicles (CAVs). In the past few years, increasing research
efforts have been made to solve the testing scenario library
generation (TSLG) problem [1][2][3][4][5][6][7] (see Part I of
this study [8] for more details). However, all previous methods
have limitations in either scenario types that can be handled
(e.g., low-dimensional scenarios only), CAV models that can
be applied (e.g., a specific CAV only), or performance metrics
that can be evaluated (e.g., safety evaluation only).

To overcome these limitations, in Part I of this study [8],
we propose a general method for the TSLG problem for dif-
ferent scenario types, CAV models, and performance metrics.
Testing scenario is evaluated by a newly proposed measure,
scenario criticality, which can be computed as a combination
of maneuver challenge and exposure frequency. The new
measure is fundamentally different from most existing studies,
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which usually overvalue the worst-case scenarios [5][6]. In our
proposed method, scenarios with higher occurrence probability
in the real-world and higher maneuver challenges will have
higher priority for CAV evaluation.

Part I paper lays out the methodological foundation and
proves the statistical accuracy and efficiency theoretically. To
implement the proposed method, however, there exist several
gaps:

First, although the proposed framework is generic, some
sub-problems vary case by case, e.g., auxiliary objective
function design, naturalistic driving data analysis, and sur-
rogate model construction. Carefully selected case studies
will provide examples for the implementation of the overall
framework.

Second, it is significant to show the ability of the proposed
methods in handling different performance metrics. Most
existing studies focus only on safety evaluation, which is
essential but insufficient for a deployable CAV. Besides safety,
functionality is another important performance metric, which
shows the CAV’s ability to complete driving tasks in a timely
manner. Designing and implementing testing scenarios for
functionality evaluation are necessary.

Finally, applying the proposed methods directly to high-
dimensional cases can be problematic, as the computational
complexity of critical scenario searching increases exponen-
tially with the increase of dimensionality. However, most of
the driving scenarios are naturally high-dimensional. So how
to deal with high dimensional testing scenarios becomes an
important issue that needs to be addressed. We should note
that most existing studies also suffer from the “curse of di-
mensionality”. For example, the PEGASUS project [3] applied
an exhaustive searching method to find all scenarios, which
is impossible for high-dimensional scenarios. The accelerated
evaluation method proposed in [4] also has difficulty in cali-
brating importance functions, where computational complexity
grows exponentially with the dimensionality.

This paper aims to fill in these gaps. Three common testing
cases, including cut-in, highway exit, and car-following, will
be discussed in this paper (see Fig. 1). The cut-in case
illustrates each step of the scenario library generation process
and our evaluation framework. Because the cut-in case is low
dimensional, it is convenient to visualize the results and help
readers better understand the proposed methods. The highway
exit case focuses on the functionality evaluation. Compared
with safety evaluation, the major difference lies in the design
of auxiliary objective function for the library generation, i.e.,
how to quantify the maneuver challenge regarding function-
ality. The car-following case is designed to show the ability
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of the proposed methods under high-dimensional scenarios.
To this end, the proposed methods in Part I are enhanced
by reinforcement learning (RL) techniques. The RL-enhanced
method shows the powerful ability of the framework proposed
in Part I in handling high-dimensional scenarios. For all
three cases, results show that the proposed framework can
effectively generate the testing scenario libraries and accelerate
the CAV evaluation process by multiple magnitudes with same
evaluation accuracy, if compared with the on-road test method.

(a) (b) (c)

Fig. 1. An illustration of the three cases: (a) cut-in, (b) highway exit, and (c)
car-following. BV denotes a background vehicle.

The rest of the paper is organized as follows. For the
convenience of readers, Section II briefly revisits the proposed
method in Part I. Section III studies the cut-in case for
safety evaluation. Section IV studies the highway exit case for
functionality evaluation. In Section V, RL-enhanced method
is developed for the high-dimensional car-following case. The
major advantages and limitations of the method are discussed
in Section VI. Finally, Section VII concludes the paper.

II. REVISIT THE PROPOSED METHOD IN PART I

For the convenience of readers, in this section, we briefly
revisit the proposed method in Part I [8] including problem
formulation, library generation, and CAV evaluation. Notations
of related variables are listed in Table I.

A. Problem Formulation

The goal of the proposed method is to generate a set
of critical scenarios, which can be used to evaluate CAVs
for certain performance indices. If an event of interest with
CAVs is denoted as A (e.g., accident event), the performance
of CAVs can be quantitatively evaluated by its occurrence
probability (e.g., accident rate):

P (A|θ) =
∑
x∈X

P (A|x, θ)P (x|θ), (1)

where x denotes decision variables of scenarios, X denotes
the feasible set determined by the operational design domain
(ODD), and θ denotes the pre-determined parameters under the
ODD, such as road type, number of lanes, weather conditions,
etc.

TABLE I
NOTATIONS OF VARIABLES.

Variable Notation

θ
Pre-determined parameters of scenarios in the operational
design domain.

x Decision variables of testing scenarios.
A Event of interest (e.g., accident) with a CAV model.
S Event of interest (e.g., accident) with a surrogate model.
X Feasible set of the decision variables.

Φ
Set of decision variable vector of critical testing scenar-
ios.

V (x|θ) Criticality value of a scenario determined by x and θ.
N(X), N(Φ) Total number of scenarios of the set X, Φ.

P̄ (xi|θ)
Probability of sampling the scenario xi in the generated
library with pre-determined parameters θ.

ε Exploration probability of ε-greedy sampling policy.

P̂ (A|θ) Estimated probability of the event A with pre-determined
parameters θ.

n Total number of sampled testing scenarios.

R, Ṙ
Range and range rate at the cut-in moment between the
background vehicle and test CAV.

R(t), Ṙ(t)
Range and range rate at time t between the background
vehicle and test CAV.

ω Weight parameter.

d(x,Ω)
Normalized distance between scenario x and a high
exposure frequency zone Ω.

W Normalization factor.

Essentially the on-road test is to measure P (A|θ) in a
naturalistic driving environment as

P (A|θ) ≈ 1

n

n∑
i=1

P (A|xi, θ), xi ∼ P (x|θ), (2)

≈ m

n
,

where n denotes the total number of tests and m denotes
the number of occurrence for event A. Here the scenario
variables xi follow the distribution from naturalistic driving
data (NDD), i.e., xi ∼ P (x|θ). In this paper, either on-road
tests or simulation of on-road tests with naturalistic driving
environment is referred as NDD evaluation. Because the event
A in NDD evaluation is usually rare, the required number of
tests is intolerably large with reasonable precision [9].

To mitigate this issue, importance sampling techniques were
applied by [4] as

P (A|θ) =
∑
x∈X

P (A|x, θ)P (x|θ)
q(x)

q(x), (3)

≈ 1

n

n∑
i=1

P (A|xi, θ)P (xi|θ)
q(xi)

, xi ∼ q(x),

where q(x) denotes an importance function. According to
importance sampling theory [10], to obtain a certain estimation
precision, the required number of tests (n) is determined by
the importance function, and how to construct a proper im-
portance function remains a challenge. A properly constructed
importance function is essential to achieving the goal of library
generation.
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B. Library Generation

The basic idea of library generation is to define the critical-
ity of scenarios and search critical scenarios to construct the
library. The criticality of a scenario is defined as

V (x|θ) def
= P (S|x, θ)P (x|θ), (4)

where S denotes the event of interest with a surrogate model
(SM) of CAVs, and P (S|x, θ) is the occurrence probability
of S in scenario (x, θ). As shown in Eq. (4), the scenario
criticality is expressed as a combination of maneuver challenge
(P (S|x, θ)) and exposure frequency (P (x|θ)). Since too many
local optimal solutions exist in the criticality function, naive
search for the critical scenarios is inefficient. To solve this
issue, the multi-start optimization and seed-fill based searching
method is applied, where an auxiliary objective function is
designed to provide searching directions. The SM and the
auxiliary objective function will be discussed case by case.

C. CAV Evaluation

After the generation of library, testing scenarios are sampled
from the library with ε-greedy policy, and the performance
index (P (A|θ)) is estimated based on the testing results. A
minimal number of tests is required for achieving certain
estimation precision.

The sampling distribution with ε-greedy policy is derived
as

P̄ (xi|θ) =

{
(1− ε)V (xi|θ)/W, xi ∈ Φ
ε/(N(X)−N(Φ)), xi ∈ X\Φ (5)

where N(X) denotes the total number of feasible scenarios,
Φ denotes the set of critical scenarios, the selection of ε is
theoretically analyzed (see Corollary 1 in Part I paper), and
W is a normalization factor as

W =
∑
xi∈Φ

V (xi|θ). (6)

After testing the CAV with sampled scenarios, the index
P (A|θ) can be estimated as

P̂ (A|θ) def
=

1

n

n∑
i=1

P (xi|θ)
P̄ (xi|θ)

P (A|xi, θ), (7)

where P (A|xi, θ) is estimated by the testing results.
The minimal number of tests is shown as follow. The testing

process stops if the relative half-width of the estimation is less
than a pre-determined threshold β [4][11][12] as

zα
µ̂
V ar(µ̂) ≤ β, (8)

where zα is a constant with the confidence level at 100(1 −
α)%, µ̂ = P̂ (A|θ) is the estimation of the index, and
V ar(µ̂) = σ2/n is the estimation variance, which decreases
with increasing number of tests, i.e., n.
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Fig. 2. An illustration of the general procedure for CAV evaluation.

III. CUT-IN CASE STUDY

Before we present the cut-in case study, a general imple-
mentation procedure for CAV testing is provided in Fig. 2. For
all three case studies, we will present in the order of problem
formulation, library generation, and CAV evaluation.

For the cut-in case shown in Fig. 1 (a), the decision variables
and the performance index are formulated in Subsection III.A.
In Subsection III.B, an auxiliary objective function is designed
for critical scenario searching, NDD is analyzed to provide
the exposure frequency, and SM is constructed to measure the
maneuver frequency. With the generated library, a typical CAV
is tested and evaluated in Subsection III.C.

A. Problem Formulation

Similar to most existing studies [3][4], the decision variables
of the cut-in case are simplified as two dimensions, i.e.,

x = [R, Ṙ]T ,

where R and Ṙ denote the range (the longitudinal distance
between the rear bumper of the preceding vehicle and the front
bumper of the ego vehicle) and range rate (the longitudinal
speed difference) at the cut-in moment. For this simplification,
the background vehicle (BV) is assumed to keep constant
velocity after the cut-in behavior, and parameters of road
environments are pre-determined. All these pre-determined
parameters are denoted as θ. The accident rate is utilized to
measure the safety performance of CAVs in the cut-in case.
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The on-road test method is simulated to estimate the accident
rate as a baseline.

B. Library Generation

To implement the library generation method, three questions
need to be answered specifically, i.e., auxiliary objective
function design, NDD analysis, and SM construction.

1) Auxiliary Objective Function Design: To provide search-
ing directions for critical scenarios, an auxiliary objective
function is designed as the combination of estimated maneuver
challenge and exposure frequency.

The maneuver challenge is estimated by minimal
normalized positive enhanced time-to-collision (mnpETTC).
As discussed in [13][14], ETTC is one of most widely used
indices of safety evaluation for varying velocity scenarios, and
it is defined as

ETTC(t) =
−Ṙ(t)−

√
Ṙ2(t)− 2ur(t)R(t)

ur(t)
, (9)

where R(t) and Ṙ(t) are the range and range rate at time
t, and ur(t) is the relative acceleration. Values of ETTC
for different scenarios can be obtained by simulations. To
make the index comparable, a normalization factor is applied,
denoted as UI , which is calibrated by NDD analysis. Negative
values of ETTC, which denote safe situations, will be set to
one. Then the minimal normalized positive ETTC (mnpETTC)
can be calculated as

mnpETTC(t) = min
t
npETTC(t), (10)

where

npETTC(t) =

{
ETTC(t)/UI , ETTC(t) ≥ 0

1, ETTC(t) < 0
. (11)

The exposure frequency of a scenario is estimated by
the distance between the scenario and a common set (i.e.,
scenarios with high exposure frequency). The common set is
determined by NDD analysis, and the distance is defined as

d(x,Ω) = min
y∈Ω

d(x, y), (12)

= min
y∈Ω

√√√√ 1

md

md∑
i=1

(xi − yi)2

U2
F,i

,

where Ω denotes the common set, md is the dimension of the
decision variables, and UF,i is the normalization factor for the
i-th dimension, which is calibrated by NDD analysis.

The auxiliary objective function for safety evaluation in the
cut-in case is formulated as

min
x
J(x) = min

x
(mnpETTC(x) + w × d(x,Ω)) , (13)

where w ∈ (0, 1] is a balance weight. Note the goal of the
auxiliary objective function is to provide searching directions,
so certain roughness (e.g., caused by w) is reasonable and
acceptable. The values of the parameters for the auxiliary
objective function are listed in Table II.

TABLE II
THE AUXILIARY OBJECTIVE FUNCTION PARAMETERS IN THE CUT-IN CASE.

Parameter Value Parameter Value
md 2 UI 100
UF,1 18 UF,2 20
w 1.0 - -

2) NDD Analysis: NDD is analyzed to provide exposure
frequency measurement, determine parameters of the auxiliary
objective function, and calibrate the SM.

The NDD from the Safety Pilot Model Deployment (SPMD)
program at University of Michigan [15] is utilized for the cut-
in case. The SPMD database is one of the largest databases
in the world that recorded naturalistic driving behaviors over
34.9 million travel miles from 2,842 equipped vehicles in Ann
Arbor, Michigan. In the database, there are 98 sedans equipped
with the data acquisition system and MobilEye, which enables
the measurement of both longitudinal and lateral distances be-
tween the ego vehicle, preceding vehicles, and lane markings,
at a frequency of 10 Hz. By analyzing these lateral distances,
cut-in events can be identified. For each cut-in event, the cut-in
moment is determined by the time instant when the preceding
vehicle crosses the lane marking, and the range and range
rate at that moment are recorded for the NDD analysis. In
this paper, the following query criteria [4][16] are designed to
extract all cut-in events from the database: (a) the vehicles’
speeds at the cut-in time belong to (2m/s, 40m/s); (b) the
range at the cut-in time belongs to (0.1m, 90m). As a result,
414,770 qualified cut-in events are successfully obtained. Fig.
3 shows the location distribution of the events. The exposure
frequency distribution (i.e., P (x|θ)) is shown in Fig. 4, where
brighter color denotes higher exposure frequency. The range
and range rate are discretised by 2m and 0.4m/s respectively.
The NDD evaluation method is equivalently sampling testing
scenarios from this probability distribution.

Fig. 3. An illustration of the cut-in event distribution in the Safety Pilot
Database [16].

We now discuss how to determine the parameters in the
auxiliary objective function. First, the common set Ω can be
determined by finding a minimal rectangle or hyper-rectangle
of scenarios with high probabilities (i.e., P (x|θ) > 10−3).
As shown in Fig. 4, the dashed red rectangle denotes the
boundaries of the common set in the cut-in case (i.e., [6, 88]
for range and [−2.4, 1.2] for range rate). For more complex
scenarios, the common set can be further simplified as the
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Fig. 4. The exposure frequency (i.e., P (x|θ)) of the cut-in range and range
rate. The dashed red rectangle denotes the boundary of the common set (i.e.,
Ω).

most frequent scenario, e.g., R = 14, Ṙ = 0. Second, the
normalization factors are determined by the maximal distance
between scenarios and the common set. For example, the
maximal range rate between scenarios and the common set
is smaller than 18, so the normalization factor of the range
rate is set to 18.

3) Surrogate Model Construction: SM construction is a
very important step in the library generation process. It repre-
sents what we know about the generic features of CAVs. The
“generic features” capture basic behavior of a CAV, e.g., keep
safe distances with surrounding vehicles. Similar to human
drivers, where different drivers have different driving habits,
generic features exist among all drivers. An ideal SM should
be calibrated from actual CAV driving data similar to human
driving model calibration [17]. At the current stage, however,
there is very little open CAV data available for public research.
Therefore, we propose to calibrate the SM based on the human
driving data, i.e., NDD.

Fig. 5. The safety performance of the SM, where the SM has accidents in
scenarios of the yellow region.

In this case study, a calibrated intelligent driving model
(IDM) [18] is selected as the SM for the car-following

behaviors after the cut-in event:

u(k + 1) = (14)

αIDM

1−
(
v(k)

βIDM

)cIDM

−

(
sIDM(v(k), Ṙ(k))

R(k)− LIDM

)2
 ,

where k denotes the discrete time step, u denotes the acceler-
ation, αIDM, βIDM, cIDM, LIDM are constant parameters, and

sIDM(v(k), Ṙ(k)) = s0 + v(k)T +
v(k)Ṙ(k)

2
√
αIDMbIDM

, (15)

where s0, bIDM, and T are constant parameters. Similar to
[19], the constraints of acceleration and velocity are added
to make the model more practical (i.e., model accident-prone
behaviors) as

vmin ≤ v ≤ vmax, amin ≤ u ≤ amax. (16)

An accident event is defined as the vehicle range is smaller
than a threshold, i.e., R(t) < dacci. The calibrated values are
listed in Table III. Fig. 5 shows the safety performance of the
selected SM, where the SM has accidents in scenarios of the
yellow region.

TABLE III
THE SURROGATE MODEL PARAMETERS IN THE CUT-IN CASE.

Parameter Value Parameter Value
vmax 40 m/s vmin 2 m/s
amin -4 m2/s amax 2 m2/s

αIDM 2 βIDM 18
cIDM 4 s0 2
LIDM 4 T 1
bIDM 3 dacci 1 m

4) Library Generation: The optimization and seed-fill
based method proposed in Part I of this study [8] is applied to
search for critical scenarios and construct the library. In this
case, 50 points are uniformly sampled as the initial starting
points. As discussed in Corollary 2 in Part I, the threshold of
critical scenarios is determined as

γ =
m

N(X)−N(Φ)
≈ m

N(X)
= 2.9× 10−4, (17)

where m = 1, and N(X) = 47 × 76 = 3, 420. The
discretization intervals of the range and range rate are 2m
and 0.4m/s, and the boundaries of the range and range rate
are (0, 90] and [−20, 10] respectively.

Fig. 6 shows the obtained probability distribution after the
library generation process. The color denotes the probability
of a scenario, which is calculated by the normalized criticality.
Compared with Fig. 4, where only exposure frequency is
considered, the new distribution considers both the maneuver
challenge and exposure frequency of scenarios. All scenarios
with criticality values exceeding the threshold γ will be
included in the library. In this case, the generated library
contains a total number of 184 scenarios, which is about 5.38%
of all scenarios.
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Fig. 6. The generated library of the cut-in case for safety evaluation. The
color denotes the testing probability of scenarios.

C. CAV Evaluation

In this step, a specific CAV is evaluated with the generated
library. For field implementations, a real CAV should be tested.
In this paper, a simulated CAV model is used as a proof of
concept to validate the proposed method.

The simulation model used in [4], which combines adaptive
cruise control and autonomous emergency braking functions,
is adopted in this case. The NDD evaluation method is applied
as the baseline, where testing scenarios are sampled from the
NDD distribution in Fig. 4. For the proposed method, testing
scenarios are sampled from the generated library in Fig. 6.
The ε-greedy sampling policy is applied with ε = 0.05, which
is determined according to Corollary 1 in Part I paper [8]. The
chosen CAV model is tested in the sampled scenarios, and the
accident event is recorded.

Fig. 7 shows the comparison of the two evaluation methods.
The blue line represents the results of the NDD evaluation
method, and the bottom x-axis represents its number of tests.
The red line represents the results of the proposed method,
and the top x-axis represents its number of tests. As shown
in Fig. 7, both methods can obtain accurate estimation of the
accident rate for a pre-determined relative half-width. In this
paper, we set α = 0.95 and β = 0.3. Fig. 7 (b) shows that the
proposed method achieves this confidence level after 51 tests,
while the NDD evaluation method needs 9.63×104 tests. The
proposed method is about 1,888 times faster than the NDD
evaluation method.

IV. HIGHWAY EXIT CASE STUDY

As shown in Fig. 1 (b), for the highway exit case, the
test CAV needs to make a lane change to the right and exits
the highway within a certain distance. Compared with safety
evaluation, the major difference of functionality evaluation
lies in the design of auxiliary objective function for critical
scenario searching. To this end, several new concepts are
proposed, i.e., task, task solution, task solution difficulty, and
task difficulty. Based on these concepts, an auxiliary objective
function is designed.

(a)

(b)
Fig. 7. Results of the cut-in case: (a) estimation results of the accident rate;
(b) relative half-width of the estimation results.

A. Problem Formulation

The decision variables of the highway exit scenario include
initial states of the CAV, number of BVs, and trajectories of
each BV, which is high-dimensional. To simplify the problem
and focus on the functionality evaluation, the initial position
and velocity of the CAV are pre-determined as p0 and v0,
and only two BVs is considered. The two BVs will keep their
initial velocity unless the distance between them is less than
a threshold dcf . In such case, the following BV will change
its speed to be the same as the leading BV. As a result, the
decision variables are formulated as

x = [p0,1, v0,1, p0,2, v0,2]T , (18)

where p0,i, v0,i denote the initial position and velocity of the
i-th BV. The discrete interval of time and position is chosen as
∆t and ∆p respectively. In this case study, the initial problem
settings are summarized in Table IV.

B. Library Generation

The library generation methods are the same as those
presented in the cut-in case. To make the paper concise, only
the auxiliary objective function design for the functionality
evaluation will be elaborated.
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TABLE IV
THE INITIAL PROBLEM SETTINGS FOR THE HIGHWAY EXIT CASE.

Parameter Value Parameter Value
p0 0 m v0 30 m/s
dcf 2 m p0,i [−100, 200]

v0,i [20,40] ∆t 0.1 s
∆p 5 m - -

1) Auxiliary Objective Function Design: Similar to the
cut-in case, the auxiliary objective function is composed of
estimated exposure frequency and maneuver challenge. To
evaluate the maneuver challenge for generic functionality, four
new concepts are proposed, i.e., task, task solution, task solu-
tion difficulty, and task difficulty. The “task” is defined based
on the functionality, e.g., exit from the highway. The “task
solution” f denotes a feasible CAV trajectory to complete
the task, i.e., f ∈ F. F represents the feasible set of CAV
trajectories. The “task solution difficulty” denotes the difficulty
in completing the task solution, i.e., W (f), where W (f) is
negative and larger W (f) denotes higher difficulty. Finally, the
“task difficulty” denotes the difficulty of the task, which can
be evaluated by the summation of all task solution difficulties
as

Mf (x) =
∑
f∈F

W (f). (19)

This definition can represent both the difficulty in finding a
feasible solution to the task and completing that solution.

Fig. 8. Illustration of the task difficulty evaluation of the highway-exit case.

For the specified highway exit case, the maneuver challenge
is evaluated based on the proposed concepts. The task is to
make a lane change to the right before reaching the off-
ramp location. The task solution is defined as a feasible
lane-change point f = (t, p), where t is the lane-change
time and p is the lane-change position. The feasible lane-
change zone F is determined by maximal/minimal velocity
(vmax, vmin), highway exit location (L), safe time-to-collision
gaps (tmin), and maximal/minimal acceleration (amax, amin).
Fig. 8 illustrates an example of the feasible lane change zone
for a specific scenario, i.e., x = [−25, 34.5,−100, 40]T . The

initial position of the CAV is set zero. The lane change
boundary (shown as the red dashed line) is determined by
the maximal/minimal velocity and the off-ramp location. The
feasible lane change zone (shown as the green lines), i.e., F,
consists of three isolated zones, which are separated by the
trajectories of BVs (shown as the black lines).

For simplicity, we assume all task solutions of this case
have the same task solution difficulty. Then, the task difficulty
can be estimated as

Mf (x) =
∑
f∈F

W (f) = −S(F), (20)

where S(F) denotes the area of the feasible lane-changing
zone. To make the index comparable with exposure frequency,
a normalization factor is applied, denoted as US , which can be
obtained by the area enclosed by the lane change boundary.
Finally, the auxiliary objective function of the highway exit
case is designed as

min
x
J(x) = min

x
(S(F)/US + w × d(x,Ω)) , (21)

where w is the weight, and d(x,Ω) can be obtained similarly
as in the cut-in case (Eq. (12)). The common set (Ω) in
this case can be constructed by most frequent scenarios. The
parameter values of the auxiliary objective function are listed
in Table V.

TABLE V
THE PARAMETERS FOR THE HIGHWAY EXIT CASE.

Parameter Value Parameter Value
amax 2 m2/s amin -4m2/s

L 200 m w 1
tmin 0.5 s t [0, 10]

p [0, 200] US 500

2) NDD Analysis: The NDD from the Integrated Vehicle-
Based Safety System (IVBSS) project is used to provide
exposure frequency information [20]. In the IVBSS project,
108 randomly sampled drivers from different ages used sixteen
Honda Accord vehicles in an unsupervised manner for a period
over 40 days. In this paper, the exposure frequency of highway
exit scenarios is determined by the car-following events of the
two BVs at the rightmost lane. Query criteria are designed to
extract car-following events from the database as: (1) vehicle
was traveling on a highway; (2) vehicle was traveling at a
speed of at least 20 m/s (≈45 mph); (3) cruise control
function was not activated; (3) dry surface condition; (4) day
light condition. The resulting dataset represents a total of
5 × 104 car-following events and 1.47 × 106 points of car-
following trajectories. The exposure frequency of a highway
exit scenario can be estimated as

P (x|θ) = P (p0,1|θ)P (v0,1, R, v0,2|θ), (22)

where R = p0,1 − p0,2, P (p0,1|θ) denotes the initial position
probability of the leading BV, which can be estimated by
uniform distribution, and P (v0,1, R, v0,2|θ) is obtained from
the distribution of car-following trajectories in the NDD.
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3) SM Construction: The MOBIL (‘minimizing overall
braking induces by lane changes’) model was proposed by
[21] to derive human lane-changing rules for discretionary and
mandatory lane changes. It provides the utility measurement
method for deciding which gap has a desirable lane change
position as

ULG = ũ− u+ pLG (ũnew − unew + ũold − uold) , (23)

where ũ denotes the new acceleration of the CAV after the
lane change, pLG is the politeness factor, and unew, uold
denote the acceleration of the new follower and old follower
respectively. As it is desirable to complete the lane change,
the politeness factor is set close to zero, e.g., pLG = 0.1.
To predict the CAV’s trajectories before the lane-change, the
Model Predictive Control (MPC) [22] is applied, and the
trajectory with higher predictive utility of lane change, i.e.,
ULG, will be chosen as the solution to the task.

4) Library Generation: Similar to the cut-in case, a hun-
dred points are uniformly sampled as the initial starting points
for the optimization method, and the threshold of critical
scenarios is determined as

γ =
1

N(X)
= 6.1× 10−7, (24)

similar to Eq. (17). The size of total scenarios is N(X) =
n2
p × n2

v = 1.64 × 106, where np = 61 and nv = 21
denote the number of the feasible value of variables p0,i and
v0,i respectively. After applying the critical scenario searching
method, the testing scenario library of the highway exit case is
generated. The total number of critical scenarios in the library
is 1,895, which is about 0.12% of all scenarios.

C. CAV Evaluation

The CAV lane-change model developed in [23] is used for
evaluation in this case study. Similarly, the NDD evaluation
method is used as the benchmark. In the proposed method,
testing scenarios are sampled from the generated highway exit
library, and events of task failures (i.e., cannot exit from the
highway) are recorded. Similar to the cut-in case, the ε-greedy
sampling policy is applied with ε = 0.10. The task failure
rate is estimated to measure the functionality performance of
the CAV model in the highway exit case. After the estimated
task failure rate converges to a certain estimation precision,
the estimated task failure rate is obtained, and the evaluation
process is completed, as shown in Eq. (8).

Fig. 9 shows the comparison of the two evaluation methods.
The legends and axis are the same as those in the cut-in case.
Similar with the previous case study, both methods can obtain
unbiased estimation of the failure rate with the relative half-
width (β = 0.2). Fig. 9 (b) shows that the proposed method
achieves this estimation precision after 2.6× 103 tests, while
the NDD evaluation method takes 6.6×105 tests. The proposed
method is about 255 times faster than the NDD evaluation
method.

(a)

(b)
Fig. 9. Results of the highway exit case: (a) estimation results of the task
failure rate; (b) relative half-width of the estimation results.

V. CAR-FOLLOWING CASE STUDY

The car-following case is designed to show the ability of
the proposed methods in solving the TSLG problem with high-
dimensionality. As shown in Fig. 1 (c), the test CAV follows a
BV for a certain period of time. The decision variables include
the initial condition and acceleration profile of the leading BV:

x =
[
v0, R0, Ṙ0, u1, u2, . . . , um

]T
, x ∈ X (25)

where v0 denotes the initial velocity of the leading BV, R0

and Ṙ0 denote the initial range and range rate between the BV
and CAV, m denotes the total time steps, and u1, u2, . . . , um
denote the acceleration sequences of the BV. If the BV is
controlled every 1s, for a 30s car-following scenario, the
dimension of the scenario is 33. Since the computation com-
plexity grows exponentially with the dimension, the problem
faces “curse of dimensionality”. To the best of our knowledge,
none of the existing evaluation methods can be applied to
evaluate the high-dimensional cases.

The key to handle high-dimensionality is to formulate the
TSLG problem as a Markov Decision Process (MDP) problem.
Let s = (vBV , R, Ṙ) ∈ X denote the state, where vBV denotes
the speed of the BV, R is the range, Ṙ is the range rate, and
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X is the feasible set of states. Let u ∈ U denote the action,
where U is the feasible acceleration set of the leading BV.
It is assumed that the Markovian property holds considering
the next action is dependent only on the current state, i.e., the
acceleration of the BV is dependent only on its current speed.
Then a testing scenario x in Eq. (25) can be described as a
series of states and actions (i.e., s1

u1→ s2
u2→ . . . ), and the

set of feasible scenarios X can be represented by the decision
tree, as shown in Fig. 10. Every branch from the initial state to
the terminal state (i.e., leaf node) specifies a testing scenario.
The library generation problem now turns into the problem of
finding the critical branches for CAV evaluation.

Fig. 10. Illustration of the generated library (i.e., red circles and red arrows)
in the scenario space.

In order to compute the criticality of each scenario, here we
define the value of each state-action pair Q(s, u) as

Q(sk, uk) = P (S|uk, sk)P (uk|sk), k = 1, · · · ,m. (26)

The definition of Q is consistent with the proposed definition
of criticality. As shown in Eq. (26), the left term P (S|uk, sk)
represents “the probability of the event S if the scenario
is currently at the state sk and take the action uk”, which
measures the maneuver challenge. The right term P (uk|sk)
represents “the probability of taking action uk if the scenario
is currently at the state sk”, which is the exposure frequency.
With such definition, we can prove that the scenario criticality
can be computed as

V (x) = C(x)

m∏
k=1

Q(sk, uk),

where C(x) is a normalization factor of the scenario x, and
θ is omitted to simplify notations. The proof of this equation
can be found in Theorem 1.

To obtain Q(s, u), the temporal-difference (TD) reinforce-
ment learning (RL) technique is applied. BVs are the “agent”
of the RL scheme, and the state of test CAV is the “envi-
ronment”, which is represented by a deterministic SM. The
state transition is influenced by both BVs and the deterministic
SM. The TD-RL method updates the Q(sk, uk) based on the
estimation of the next state value Q(sk+1, uk+1) (i.e., the
TD(0) method in [24]). The iterative update is based on the
TD error, which measures the difference between the current
estimation of Q(sk, uk) and the new estimation. Let δk denote

the TD error at the time step k, then an iteration equation can
be obtained as

Q(sk+1, uk+1)← Q(sk, uk) + αδk,

where α is the learning rate, e.g., 0.1. In Theorem 2, we prove
that, after the training process of TD-RL, Q(s, u) can converge
to the values defined in Eq. (26) if the TD error is defined as

δk =

 ∑
uk+1∈U

Q(sk+1, uk+1)

P (uk|sk)−Q(sk, uk). (27)

By pruning the uncritical state-action pairs of the decision
tree, the critical scenario library contains all branches with
V (x|θ) > 0. As shown in Fig. 10, the branches of consecutive
red nodes and arrows represent the critical scenarios.

A. Problem formulation for the car-following case

In the car-following case, safety is selected as the perfor-
mance metric and accident rate is used to represent safety.
The scenario state contains three variables, i.e., speed of the
leading BV (vBV ), range (R) between the leading BV and the
test CAV, and the range rate (Ṙ):

s = (vBV , R, Ṙ) ∈ X . (28)

The leading BV’s acceleration (u) is defined as the action. We
discretise the range (R ∈ (0, 115]), range rate (Ṙ ∈ [−10, 8]),
velocity (v ∈ [20, 40]), and acceleration (u ∈ [−4, 2]) by 1m,
1m/s, 1m/s, and 0.2m2/s respectively. The leading BV is
controlled every 1s. For a 30s car-following case, the size of
the entire scenario space is N(X) = 21 × 115 × 19 × 3130.
The size of the entire state space is N(X ) = 21 × 115 ×
19 = 45, 885, and the size of the entire state-action space is
N(X )N(U) = 45, 885 × 31 ≈ 1.4 × 105, both of which are
much smaller than the entire scenario space N(X).

B. Library Generation

The same NDD of the highway exit case is used in the car-
following case, where both the car-following and free-driving
events are extracted. The car-following events are utilized to
calculate the exposure frequency of states P (s), while the free-
driving events are utilized to estimate the exposure frequency
of actions P (u|s).

To improve the searching efficiency of critical scenarios, the
state space is classified into three zones, i.e., collision zone,
dangerous zone, and safe zone. The collision zone is defined
by the states Xc = {s ∈ X |R ≤ dacci}, where dacci is a
distance threshold for an accident, e.g., 1m. The safe zone Xs
is defined by the states which cannot lead to an accident with
even the most extreme actions of the leading BV, i.e., BV
decelerates with maximal deceleration. The dangerous zone
Xd contains the states which have probabilities leading to an
accident. Then values of P (S|uk, sk) for states in different
zones can be obtained as

P (S|uk, sk) =

{
0, sk ∈ Xs
1, sk ∈ Xc

.

As shown in Fig. 11, a non-trivial car-following testing sce-
nario should start from a dangerous state (i.e., root state) and
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stop at a collision state or a safe state (i.e., terminal state).
The critical scenario should contain the state in the collision
zone. The same car-following SM is applied as in Eq. (14). By
simulations of the SM, the dangerous zone is obtained, which
consists about 5,000 states (10% of all the states).

Fig. 11. Illustration of the state transitions for car-following scenarios. States
are classified into three zones, i.e., collision zone, dangerous zone, and safe
zone.

The initial Q values are obtained from the NDD. To improve
the training efficiency, a uniform distribution is applied as the
training policy, which guarantees that all state-action pairs can
be visited for unlimited number of times if the training has not
stopped [24]. The absolute value of the TD error is defined
as the stop criteria as |δt| < δ0, where δ0 is a pre-determined
threshold, e.g., 10−10.

The training is conducted with Matlab 2018, in a work-
station equipped with Intel i7-7700 CPU and 16G RAM. It
takes about 20 minutes to reach convergence. Fig. 12 (a)
shows the convergence of the absolute TD error with learning
iterations. The values of state-action pairs converge after about
3 × 106 steps of iterations. Fig. 12 (b) shows an example
of the probability distribution of the actions for a dangerous
state, i.e., s = (38, 6,−2). The distribution from NDD is
represented as the blue line (i.e., P (u|s)), while the generated
distribution by the RL-enhanced method is represented as
the red line (i.e., P (u|s, S)). It shows that the generated
distribution behaves more aggressively than NDD with higher
probabilities at extreme decelerations. The highest probability
lies in u = −3.4 m/s2, instead of u = −4 m/s2, which is
consistent with the proposed definition of criticality combined
of both maneuver challenge and exposure frequency.

C. CAV Evaluation

After the above steps, the testing scenario library of the car-
following case is generated. Testing scenarios can be sampled
from the scenario library. The initial state is generated by Eq.
(32), and accelerations of the BV are generated by Eq. (34).
Similar to the previous cases, the ε-greedy sampling policy
is applied in the sampling process with ε = 0.1. As shown
by the red line in Fig. 12 (b), the probability of acceleration
greater than -3 is zero, i.e., out of the library. By adopting
the ε-greedy policy, however, these acceleration values can be

(a)

(b)
Fig. 12. (a) The training results of the absolute TD error and (b) probability
distribution of the actions at the state s = (38, 6,−2).

sampled with a small probability. Similarly, the initial state has
a small probability to be sampled from the safe states as well.
The same CAV car-following model used in the cut-in case
study [4] is evaluated with the generated library. The NDD
evaluation method is used as the baseline.

Fig. 13 shows comparison of the two evaluation methods.
The blue line represents results of the NDD evaluation method,
and the red line represents results of the proposed method. As
shown in Fig. 13, both methods can obtain accurate estimation
of accident rate with the same estimation precision (β = 0.2).
Fig. 13 (b) shows that the proposed method achieves this
estimation precision after 50 tests, while the NDD evaluation
method takes 1.875×107 tests. The proposed method is about
3.75× 105 times faster than the NDD evaluation method.

VI. DISCUSSIONS

In this section, based on the results of the three case studies,
the advantages and limitations of the proposed method are
discussed.

A. Advantages of the proposed method

As demonstrated by the case studies, the proposed method
is generic as it can be applied for evaluation with different
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(a)

(b)
Fig. 13. Results of the car-following case: (a) estimation results of the accident
rate; (b) relative half-width of the estimation results.

performance metrics (e.g., safety and functionality) and vary-
ing CAV models under different ODDs. It can accelerate the
CAV testing for both low and high dimensional scenarios.

As demonstrated by all three cases, to reach required
evaluation accuracy, the proposed method can significantly
reduce the number of tests, comparing with the on-road test
method. Because the most time-consuming and expensive step
in the CAV evaluation process is expected to be vehicle testing,
the proposed method can significantly save cost. Similarly,
the method can also be applied in simulation platforms with
the same advantage, because testing CAVs in high-fidelity
simulations is also the most time-consuming step.

Statistical coverage of scenarios is guaranteed by the pro-
posed method, as all scenarios have possibilities to be tested. It
utilizes more domain knowledge (e.g., scenario criticality) and
outperforms the enumerative coverage (e.g., enumeration of
all possible scenarios with a certain resolution), which suffers
from the “curse of dimensionality”.

In addition, the performance index, P (A|θ), can quantita-
tively and interpretively measure the performance of CAVs
in naturalistic driving environment. Taking safety evaluation
as an example, the accident rate is the most natural index to
evaluate the safety performance.

B. Limitations of the proposed method

As indicated in Theorem 2 in the Part I paper, the efficiency
of the proposed method is affected by the “dissimilarity”
between the SM and the CAV under test, i.e., P (A|x, θ) −
P (S|x, θ). This is the major reason why the acceleration
effects of the three cases are different, from 255 to 3.75×105

times. In this paper, the commonly-used human driving models
(such as the IDM in the cut-in case and car-following case)
were adopted as SMs, which perform reasonably well and can
be served as a starting point for testing library generation. To
address the dissimilarity issue, adaptive modification of the
SM for different CAVs deserves more investigation. For CAV
developers, this problem can be solved naturally as the CAV
model can be used directly for scenario generation.

Large-scale NDD is required to calculate the exposure
frequency of scenarios, which could be a limitation to apply
the proposed method. With the deployment of on-board and
infrastructure-based sensors, however, large-scale NDD can be
collected with lower cost and become more accessible. For
example, both research institutes [25] and companies (e.g.,
Waymo, Tesla, Mobileye, etc.) are collecting such data.

VII. CONCLUSIONS

This paper complements the general TSLG methodology
developed in the Part I paper by providing three example
case studies, i.e., cut-in, highway exit, and car-following.
More importantly, the proposed method in Part I was en-
hanced by a temporal-difference reinforcement learning (TD-
RL) method to generate high-dimensional scenarios efficiently.
For all three cases, our results show that the proposed method
can effectively and efficiently generate the testing scenario
library, which can accelerate the evaluation process by 255 to
3.75× 105 times compared with the NDD evaluation method,
but with the same accuracy.

Combining Part I and Part II papers, to the best of our
knowledge, this is the first study that provides a systematic
framework and implementation guidelines for both low and
high dimensional scenarios, different performance metrics, and
varying CAV models.

There are many interesting topics that can be further investi-
gated. For the proposed TSLG method, since the dissimilarity
between the SM and the test CAV is the major cause of
evaluation inefficiency, SM as well as the generated library
can be updated adaptively using the data collected from the
testing process. Another important topic is to investigate the
scenario generation method for extremely high dimensions, for
example, urban driving environment with hundreds of back-
ground vehicles. As both the spatial and temporal complexity
will increase greatly, RL-enhanced method presented in this
paper needs further improvement. These topics are left for
future studies.
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APPENDIX A
PROOF OF THEOREMS

Theorem 1. If Q(s, u) is defined as Eq. (26) and x is defined
as Eq. (25), the scenario criticality can be computed as

V (x) = C(x)

m∏
k=1

Q(sk, uk),

where

C(x) =
P (S)∑

s1∈X
(
P (s1) ·

∏m
k=1

(∑
uk∈UQ(sk, uk)

)) .
Proof. After scenarios are represented by the decision tree,
the exposure frequency of a testing scenario can be denoted
as

P (x) = P (s1)P (u1|s1) . . . P (um|sm). (29)

As shown in Eq. (4), the criticality of a scenario is defined as

V (x) = P (S|x)P (x) = P (S)P (x|S), (30)

where P (S) is a constant, which can be obtained by Monte
Carlo simulation. Similar to the Eq. (29), P (x|S) is denoted
as

P (x|S) = P (s1|S)P (u1|s1, S) . . . P (um|sm, S). (31)

By applying Bayesian equation and Law of total probability,
we have

P (s1|S) =
P (S|s1)P (s1)∑

s1∈X P (S|s1)P (s1)
, (32)

P (S|s1) =
∑
u1∈U

P (S|u1, s1)P (u1|s1), (33)

P (uk|sk, S) =
P (S|uk, sk)P (uk|sk)∑

uk∈U P (S|uk, sk)P (uk|sk)
, (34)

where k = 1, · · · ,m. Substituting Eq. (31), (32), (33), and
(34) into Eq. (30), the theorem is concluded.

Theorem 2. After the training process of TD-RL, Q(u, s) can
converge to the values defined in Eq. (26), if the TD error is
defined as

δk =

 ∑
uk+1∈U

Q(sk+1, uk+1)

P (uk|sk)−Q(sk, uk).

Proof. The TD error is the difference between the estimated
value of Q(sk, uk) and its estimation from the next state.
Therefore, if the first term on the right in Eq. (27) is the
estimation of Q(sk, uk) based on the next state, the theorem
can be proved [24]. Consider that

P (S|uk, sk) =
∑

sk+1∈X
P (sk+1|uk, sk)P (S|sk+1),

= P (S|sk+1),

=
∑

uk+1∈U
P (S|uk+1, sk+1)P (uk+1|sk+1),

=
∑

uk+1∈U
Q(sk+1, uk+1),

where the second equivalence is derived considering the SM is
deterministic. Plugging the equation into Eq. (26), we obtain

Q(sk, uk) =

 ∑
uk+1∈U

Q(sk+1, uk+1)

P (uk|sk),

which concludes the theorem.
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